
Adversarial Black Box Attacks to Disrupt Large
Language Models via Reinforcement Learning

Wesley Tan Jia Le*

Ensign Labs
Ensign InfoSecurity

Singapore
wesley tan@ensigninfosecurity.com

Lee Joon Sern
Ensign Labs

Ensign InfoSecurity
Singapore

lee joonsern@ensigninfosecurity.com

Yi Xiang Marcus Tan
Ensign Labs

Ensign InfoSecurity
Singapore

marcusyx tan@ensigninfosecurity.com

Abstract—Large Language Models (LLMs) are effective in
solving natural language processing (NLP) tasks, i.e. question
answering and text generation. Recent works showed the possibil-
ity of generating adversarial suffixes to get valid responses from
LLMs to reply to harmful prompts, under both white-box and
black-box assumptions. In this work, we propose a novel black-
box approach to optimize for an adversarial suffix that would
bypass the LLMs’ guardrails using Reinforcement Learning
(RL). We adopted a well-known policy-gradient RL algorithm
(i.e. REINFORCE) in a novel fashion, in generating adversarial
suffixes to be applied at the Application Programming Interface
(API) level. Our results showed that our attack approach beats
our selected baseline, despite its conceptual simplicity. We also
show that our generated suffixes can break public-facing LLMs
and we believe that our work using RL can serve as a basis for
future research.

I. INTRODUCTION

LLMs are known to be highly capable of solving NLP
tasks. However, recent literature exemplified the susceptibility
of LLMs to adversarial attacks [1], [2]. [2] focused on prompts
that extract harmful information (e.g. bomb-making) via black-
box approaches. In our work, we instead focus on disrupting
the availability of LLMs by impacting users’ experiences.

They are commonly deployed as chat interfaces on web
apps, only allowing users query access. In this light, we
assume a threat model similar to [3] - an external bad actor
intercepts a user’s prompt at the model’s API level (i.e. prompt
injection attacks) and inserts an adversarial suffix to incite re-
sponses in a demeaning tone, e.g. a harmless query inciting an
aggressive response, resulting in unpleasant user experiences.
This causes usability issues affecting brand image. API, in this
context, refers to the method (programmatically or via a user-
interface) by which LLMs hosted on the back-end could be
called to serve user requests.

RL excels in navigating complex environments, making it
ideal for black-box attacks on LLMs while inspiring us to
explore this research direction. In this work, we adopted a
policy-gradient RL algorithm, REINFORCE with baseline, due
to its conceptual simplicity. It was used to train our agent
to generate adversarial suffixes, conditioned on the attacker’s
malicious intent. We note that though REINFORCE itself is
not novel, we emphasize that the way of which we used it is,
to the best of our knowledge. Moreover, the current approach

*Corresponding author

Fig. 1: Adversarial Agent Reward Feedback Loop

of which the agent is trained by can always be replaced with a
more complex RL method. Thus, our research focuses on the
concept of using RL to train an agent to generate adversarial
suffixes, rather than the RL algorithm itself. More specifically,
we highlight our contributions as follows:

1) We propose an innovative approach to perform black-
box adversarial attacks against LLMs to incite aggres-
sive responses to harmless queries, via a policy-gradient
RL algorithm.

2) We propose an additional regularization component in
the loss function, to promote diversity in selecting ad-
versarial suffixes.

II. METHODOLOGY

We modified the original loss function by adding an entropy
regularization term to promote action diversity to penalize
highly deterministic policies, shown in (1):

L = − 1

T

T∑
t=1

(Rt−Rb,t) log π(at|st, θ)+βH(π(·|st, θ)), (1)

where θ is the agent’s parameters, Rt is the sampled rewards
at step t (see (3)), Rb,t is the baseline reward at step t
(see (4)), π(at|st, θ) is the sampled policy, β is the entropy
regularization factor, H(π(·|st, θ)) is policy entropy.

Our agent has an Encoder-Decoder architecture (Fig. 2) that
aims to produce a series of adversarial strings. The encoder
uses convolutional layers to extract high-level features from
the input text while the decoder uses transposed convolutional
layers to construct the embeddings and output a probability

Fig. 2: Adversarial Agent Architecture

Fig. 3: Example of Disrupted User Input given to Llama-2

distribution, to be sampled as tokens for use as an adversarial
suffix. Subsequently, the adversarial suffix would be appended
to the end of the user input together with custom guardrails
and a scolding prompt to form the disrupted input (See Fig. 3).

Using BERTweet [4] fine-tuned to perform sentiment classi-
fication [5], we produced negative, neutral, and positive scores
for the LLM’s responses. A high negative score typically de-
notes scolding the user while a high neutral/positive response
denotes the LLM abstaining due to ethics. The scores were
used as agent feedback (See Fig. 1 step 6) computed via (2)-
(4) at each step.

r(x) =

{
γ ∗ g(x), if g(x) > c

g(x), otherwise
(2)

Rt = r(π(at|st, θ)), (3)
Rb,t = r(argmax

at

(π(at|st, θ))), (4)

where g is the sentiment classifier, γ is a score scaling factor,
c is a score threshold. Here, γ = 10 and c = 0.6, which were
empirically determined.

III. EXPERIMENT SETTINGS AND RESULTS

We used 50 prompts from the lmsys-chat-1m dataset [6]
with lengths between 50 and 120 characters. To ensure correct-
ness, we ensured that adding the harmful intent did not incite
unpleasant behavior before adding the adversarial suffix, and
did not contain any derogatory remarks or attempts to induce
objectionable behavior (e.g. bomb-making), before splitting
them into train and test sets of 30 and 20 prompts respectively.

In our experiments, we used the Llama-2 [7] LLM as our
victim model, in training our RL agent to generate adversarial
suffixes. We adjusted the target LLMs’ (llama-2-7b-chat-hf)
parameters to produce deterministic responses. At each step,
we randomly sample a batch of 48 user inputs (with replace-
ment) to generate adversarial suffixes (See Fig. 1 step 2).
We then combined the suffixes with a harmful intent prompt
(scolding the user), appended it to the user’s input before
passing it through the LLM and scoring its output (See Fig. 1
steps 3-6). In our experiments, we trained our agent using a
NVIDIA A100 40GB GPU housed on-premise for 12 hours.
In order to load the LLM model, we used 4-bit quantization,
with quant-type as “nf4”, and compute data-type as “bfloat16”.

Our training concludes when the sampled rewards have
converged, stabilizing at a high number (See Fig. 4). This

Fig. 4: Experimental Metrics for Llama-2

indicates that the agent has learned to favor adversarial tokens
that are able to carry out the attacker’s harmful intent. We
define an attack as successful if the LLM carries out the intent
of scolding the user. When we launched our test set prompts
against Llama-2, we achieved an ASR of 75%. This indicates
that our agent has learned how to generate adversarial suffixes
to bypass the guardrails.

Having trained our adversarial agents, we investigated if
the adversarial suffixes, generated by our agent trained against
the Llama-2 LLM, could be transferred to other LLMs. More
specifically, we evaluated against a closed-source, publicly
facing LLM and also an open-sourced LLM. Additionally,
we utilised prompts in both the train and test sets to study
the impact of attack effectiveness between seen and novel
prompts, with respect to the agent. We used Gemini Pro as
our targeted victim for the publicly facing LLM. As Gemini
Pro LLM has its own set of guardrails1, we removed our
custom guardrails used during training when testing on Gemini
Pro. For the open-sourced LLM, we used the Vicuna-33b
model [8], and the Chatbot Arena [9] platform to evaluate
the LLM outputs. We set the LLM output parameters as such:
temperature was set to 1, top p was set to 1 and the maximum
output tokens was set at 512.

As a baseline, we adopted a recently proposed white-box
attack, namely the Greedy Coordinate Gradient (GCG) [1], by
transferring the generated adversarial suffixes, derived from
Llama-2, against the two LLMs. As more models are derived
from the fine-tuning of pre-trained models, this evaluation
approach is highly valid. Attackers can get access to open-
sourced LLMs for conducting white-box attacks, before trans-
ferring them to the intended victims. For the GCG attack, we
used a batch size of 400, top k of 200, and each prompt
was optimised for 500 steps. If GCG was unable to find a
successful adversarial suffix against Llama-2, we deem it as
a failure case when computing ASR. In our experiments, we
found 5 prompts from the train set and 2 prompts from the
test set were not successful, with our GCG attack parameters.

As evident from Table I, our generated suffixes are able to
incite unpleasant responses, with an ASR of 70% on the train
set prompts and 26% on the test set prompts against Gemini
Pro. Against the Vicuna-33b, an ASR of 53% on the train
set prompts and 40% on the test set prompts were obtained.
This shows that the generated adversarial suffix can also be

1Evaluated on 5th Jan 2024. We note that the LLM’s response to our
adversarial suffixes can vary over time, being dependent on Google.

TABLE I: ASR of transferred adversarial prompts, using the
adversarial agent trained on the Llama-2 victim and evaluated
on respective targeted LLMs.

Data Split Model ASR
(GCG)

ASR
(ours)

Train
(30 prompts)

Gemini Pro 16.7% 70.0%
Vicuna-33b 30.0% 53.3%

Test
(20 prompts)

Gemini Pro 15.0% 26.7%
Vicuna-33b 25.0% 40.0%

(a) Example Prompt without Adversarial Suffix.

(b) Example Prompt with Adversarial Suffix.

Fig. 5: Impact of using Adversarial Suffix against Gemini Pro.

effective on models apart from the one it was trained on,
albeit being more pronounced in the train rather than the test
splits. We postulate that this is due to the adversarial suffixes
being optimized solely on the train prompts. Regardless, our
method still performed better than the prompts generated by
our baseline, in both the train and test splits. We show more
examples of successful attacks against Gemini Pro in Fig. 6.
Additionally, we performed a sanity check of our adversarial
suffixes. Fig. 5b shows Gemini Pro being susceptible to
our adversarial suffixes. Conversely, without the adversarial
suffixes, Gemini Pro refused to scold the user (see Fig. 5a).

IV. CONCLUSION

In this work, we propose a novel black-box approach to
perform prompt injection attacks with policy-based RL under
our assumed threat model, to induce unpleasant responses from
some targeted LLM. Our results show that our approach is
successful in breaking Llama-2, using data from an open-
source dataset. Moreover, our generated adversarial suffixes
are transferable to other state-of-the-art LLMs, beating the
GCG baseline in our transferability experiments. We reiterate
that our main novelty lies in the approach of conducting black-
box attacks against LLMs to induce unpleasant responses,

(a) Example Prompt 1.

(b) Example Prompt 2.

Fig. 6: Further examples of prompts using Adversarial Suffix
against Gemini Pro

and not the algorithm itself. Future work entails incorporating
a more state-of-the-art RL algorithm to train our agent and
training adversarial agents against other LLMs.

REFERENCES

[1] A. Zou, Z. Wang, J. Z. Kolter, and M. Fredrikson, “Universal and trans-
ferable adversarial attacks on aligned language models,” arXiv preprint
arXiv:2307.15043, 2023.

[2] A. Mehrotra, M. Zampetakis, P. Kassianik, B. Nelson, H. Anderson,
Y. Singer, and A. Karbasi, “Tree of attacks: Jailbreaking black-box llms
automatically,” arXiv preprint arXiv:2312.02119, 2023.

[3] S. Abdelnabi, K. Greshake, S. Mishra, C. Endres, T. Holz, and M. Fritz,
“Not what you’ve signed up for: Compromising real-world llm-integrated
applications with indirect prompt injection,” in Proceedings of the 16th
ACM Workshop on Artificial Intelligence and Security, pp. 79–90, 2023.

[4] D. Q. Nguyen, T. Vu, and A. T. Nguyen, “BERTweet: A pre-trained
language model for English Tweets,” in Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 9–14, 2020.

[5] J. M. Pérez, J. C. Giudici, and F. Luque, “pysentimiento: A python
toolkit for sentiment analysis and socialnlp tasks,” arXiv preprint
arXiv:2106.09462, 2021.

[6] L. Zheng, W.-L. Chiang, Y. Sheng, T. Li, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Li, Z. Lin, E. Xing, et al., “Lmsys-chat-1m: A large-scale real-world
llm conversation dataset,” arXiv preprint arXiv:2309.11998, 2023.

[7] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama 2: Open
foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

[8] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing, et al., “Judging llm-as-a-judge with mt-bench
and chatbot arena,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[9] W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li,
H. Zhang, B. Zhu, M. Jordan, J. E. Gonzalez, et al., “Chatbot arena: An
open platform for evaluating llms by human preference,” arXiv preprint
arXiv:2403.04132, 2024.

