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Abstract—Convolutional Neural Networks excel in various
applications but remain susceptible to adversarial attacks.
Even minute alterations, like a single-pixel shift, could
drastically mislead cutting-edge state-of-the-art models. In
this study, we explore this vulnerability — the adversarial
example problem — attributing it primarily to limited training
samples. Such a case leads to overfitting and deviation from
optimal models. To overcome this challenge, we propose
integrating a variety of symmetry-invariant operations into
network model designs. This strategy maximizes the use
of available training data, amplifies the neural network’s
expressive capacity, and empowers its robustness. Our ex-
periments demonstrate the effectiveness of this approach
against random perturbations in test data while concurrently
enhancing their generalization capabilities. By augmenting
deep learning architectures with symmetry-invariant layers,
we strive to mitigate vulnerabilities, enhancing both robust-
ness and generalization adaptability.

Index Terms—Robustness, Convolutional Neural Net-
works, Adversial Attacks, Symmetry, Generalization

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have
emerged as the go-to architecture for computer vision
tasks and have been used extensively as a backbone for
various advanced artificial intelligence (AI) systems.
However, these foundational models remain susceptible
to adversarial examples—subtle input perturbations
that mislead models [1]. As these attacks exploit the
inherent sensitivity of CNNs to subtle changes in input,
they pose a significant challenge to the deployment
of these networks in safety-critical applications. While
several defense mechanisms have been proposed, e.g.
data augmentation [2] [3], the persistent nature of
the adversarial example problem calls for innovative
solutions that overcome the limitations of existing
approaches, address the root causes of vulnerability, and
are immune against optimization-crafted perturbations.
Issues with adversarial robustness stem from the
significant distinction between optimal and overfitted
decision boundaries in models due to limited training
data. Models that are overfitted, are more susceptible
to misclassification from slight perturbations, thereby
heightening their vulnerability to adversarial attacks. To
address this, we propose an architectural advancement
in deep neural networks, shifting the focus from data
augmentation to symmetry enforcement as a guiding
principle in network design through the integration
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Fig. 1. The proposed symmetry enforcement method for CNNs in
which rotation and scale invariant layers are integrated.

of diverse symmetries—translation, rotation, and
scaling. The motivation for symmetry enforcement
stems from the observation that symmetric structures
exhibit inherent stability and resilience in the face
of variations. By integrating CNN architectures with
symmetrical characteristics, we aim to reduce the impact
of adversarial perturbations on model predictions,
thereby fortifying the reliability of these models in
real-world settings.

II. ProPOSED SYMMETRY ENFORCEMENT METHOD FOR
ConvoLuTiIONAL NEURAL NETWORKS

In this work, we aim to enhance generalization in
CNNs by integrating symmetries. We utilize several
methods to implement symmetry, aiming to approximate
perturbation invariance through various invariances at-
tained via symmetry operations within the model. This
section introduces the concept of symmetry enforcement,
outlining the mechanisms through which symmetry can
be effectively integrated. Symmetry in objects means
unchanged properties despite transformations like ro-
tation, scaling, or translation. In neural networks, these
transformations should yield consistent outputs, treating
them as symmetry operations. This principle is crucial
for adversarial examples, where even minor perturba-
tions should not change the network output. Achieving
this perturbation invariance is essential for improving
adversarial robustness.

In our work, we propose enhancing standard CNN5s
by adding a rotation-equivariant layer and a scale-
equivariant layer. This integration aims to impart the net-
work with rotation, scale, and translation invariance. Fig.
1 depicts the proposed symmetry enforcement method
in which rotation and scale invariant layers are inte-
grated into the CNN architecture.



A. Rotation Invariance

The rotation invariance is achieved through integrating
G-convolution [4] (rotationally equivariant convolution)
into the deep neural network architecture. Similar to
the translational convolution in CNNs, the G-convolution
applies rotational operations to filters, thereby achieving
rotation equivariance. Consequently, this allows different
rotated versions of the same input to produce the same
output label in the neural network.

B. Scale Invariance

The scale invariance is attained by integrating the
scale-invariant convolution layer [5] as a layer in the
network. It enables the CNN model to handle input
images of varying sizes and generate fixed-size outputs.
It works by dividing the feature map (output from
the previous convolutional layers) into bins at different
scales and applying pooling (usually max pooling) in
each bin.

C. Translation Invariance

The translation invariance is inherently integrated into
the model since CNNs are specially designed to be
translation-invariant. The huge success of CNNs has
been substantially attributed to their unique property
of translation-invariance. By using standard convolu-
tion and pooling operations, the desired translation-
invariance property is achieved.

III. ExPERIMENTAL SETUP, RESULTS, AND DiscussioN

To assess the effectiveness of our proposed symme-
try enforcement technique, we implement a symmetry-
enforced CNN architecture and compare it with a base-
line standard CNN without symmetry enforcement.
The symmetry-enforced model incorporates architectural
symmetry as detailed in Section II. We utilize CIFAR-100
as a benchmark dataset which comprises 60,000 32x32
color images in 100 classes for object recognition. The
models training was conducted on a single node HPC.

In Fig. 2, the symmetry-enforced CNN model demon-
strates better learning and higher accuracy during train-
ing, with improved initial generalization on the test set.
However, its fluctuating test accuracy suggests possible
overfitting or learning instability over time. This model
outperforms the standard CNN in training, but the latter
shows a significant early drop in test accuracy, indi-
cating less robustness and generalization. On perturbed
data, the symmetry-enforced model maintains relatively
stable accuracy, hinting at its invariance to noise and
distortions. This robustness may stem from its ability
to capture essential, invariant data features, indicating a
more generalized representation. Despite limited train-
ing data, our symmetry-enhanced model demonstrates
improved expressive capability, thus increasing its re-
silience to adversarial alterations. The performance on
the random rotated CIFAR 100 data in Fig. 3. The higher
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Fig. 2. Comparison using CIFAR 100 data:test accuracy and training
convergence
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Fig. 3. Comparison using transformed CIFAR 100 data

accuracy of symmetry-enforced model suggests that it
is better at handling the transformations applied to the
dataset, likely due to its architecture being more robust
to variations in the input data.

IV. Concrusion

In this work, we proposed a symmetry enforcement
method to enhance the robustness of CNNs against
adversarial examples. By incorporating various symme-
tries, such as rotation and scaling, into existing CNN
models to improve their robustness, this approach leads
to the development of perturbation invariance within the
models. As a result, the enhanced models demonstrate
greater generalizability to inputs that are shifted, rotated,
or scaled. The introduction of symmetry operations not
only optimizes the use of training data but also signifi-
cantly expands the expressive capabilities of the network,
contributing to increased adversarial robustness, and
showcasing the potential of symmetry to create more
versatile, reliable, and trustworthy Al systems.

REFERENCES

[1] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Ex-
plaining and harnessing adversarial examples.” arXiv preprint
arXiv:1412.6572 (2014).

[2] Taylor, Luke, and Geoff Nitschke. “Improving deep learning with
generic data augmentation.” In 2018 IEEE symposium series on
computational intelligence (SSCI), pp. 1542-1547. IEEE, 2018.

[3] Wang, L., Wang, C., Li, Y. and Wang, R., 2021. Improving robust-
ness of deep neural networks via large-difference transformation.
Neurocomputing, 450, pp.411-419.

[4] Cohen, Taco, and Max Welling. “Group equivariant convolutional
networks.” In International conference on machine learning, pp.
2990-2999. PMLR, 2016.

[5] He, Kaiming, Xiangyu Zhang, Shaoging Ren, and Jian Sun.
”Spatial pyramid pooling in deep convolutional networks for
visual recognition.” IEEE transactions on pattern analysis and
machine intelligence 37, no. 9 (2015): 1904-1916.



	Introduction
	Proposed Symmetry Enforcement Method for Convolutional Neural Networks
	Rotation Invariance
	Scale Invariance
	Translation Invariance

	Experimental Setup, Results, and Discussion
	Conclusion
	References

