
Stochastic Communication Avoidance for
Recommendation Systems

Lutfi Eren Erdogan∗1, Vijay Anand Raghava Kanakagiri∗2, Kurt Keutzer1, Zhen Dong1

lerdogan@berkeley.edu, vijay7anand@tamu.edu, keutzer@berkeley.edu, zhendong@berkeley.edu

Abstract— One of the major bottlenecks for efficient deployment
of neural network based recommendation systems is the mem-
ory footprint of their embedding tables. Although many neural
network based recommendation systems could benefit from the
faster on-chip memory access and increased computational power
of hardware accelerators, the large embedding tables in these
models often cannot fit on the constrained memory of accelerators.
Despite the pervasiveness of these models, prior methods in memory
optimization and parallelism fail to address the memory and
communication costs of large embedding tables on accelerators.
As a result, the majority of models are trained on CPUs, while
current implementations of accelerators are hindered by issues such
as bottlenecks in inter-device communication and main memory
lookups. In this paper, we propose a theoretical framework that
analyses the communication costs of arbitrary distributed systems
which use lookup tables. We use this framework to propose algo-
rithms that maximize throughput subject to memory, computation,
and communication constraints. Furthermore, we demonstrate that
our method achieves strong theoretical performance across dataset
distributions and memory constraints, applicable to a wide range
of use cases from mobile federated learning to warehouse scale
computation. We implement our framework and algorithms in
PyTorch and achieve up to 6× increases in training throughput
on GPU systems over baselines, on the Criteo Terabytes.

I. INTRODUCTION

A significant portion of machine learning research has
advanced due to better memory and computational speeds of
accelerators, alongside faster interconnects and more efficient
parallelization in large systems. However, accelerators often
have limited memory compared to CPUs, rendering many
memory-intensive algorithms infeasible for deployment. One
approach to mitigate this issue is to increase memory, but
this can’t keep up with the rapid growth of machine learn-
ing models. An alternative is to develop new parallelization
strategies that balance memory use and communication, as
explored in strategies like those in [4]. Another optimization
strategy involves quantization, where quantization aims to
minimize the memory footprint and computational require-
ments of embedding tables without significantly impacting
accuracy. Embedding tables in DLRMs, which map sparse
categorical features to dense vectors [3], are often very large
and are thus prime targets for quantization. By quantizing the
embeddings to lower bit-width representations like 4-bit [5]
or performing tensor train decomposition [9], memory usage
is significantly reduced, making it more feasible to train and

—————–
*Equal contribution, 1University of California Berkeley, 2Texas A&M

University

deploy large DLRMs and improving computational efficiency
during training and inference phases. These methods mainly
emphasize on reducing the embedding size see [8]. Another
solution is to manipulate how the model is trained to save
memory. Some examples using this solution include reversible
networks, which change the structure of the model. Others,
such as Checkmate [7], change the execution pattern of the
model, adding additional operations to backpropagation to
decrease the number of intermediate values that need to be
stored in memory.

Recent algorithms have significantly increased the scale of
NLP and CV models by reducing the memory demands per
GPU, allowing the use of accelerators for extremely large
models. However, these methods struggle with models that
have large embedding tables, which are not easily managed
by pipeline parallelism and remain large in parameter count.
Data parallelism also falls short as it is better suited for
compute-heavy tasks rather than memory-intensive embedding
operations. Furthermore, techniques like recomputation or
checkpointing do not suit embeddings well, as their high mem-
ory cost does not justify the modest savings from managing
intermediate activations.

This forces the use of model parallelism, but oftentimes
the number of accelerators required to fit the large embedding
tables are too great to make model-parallelism a financially
viable solution.

These embeddings can often be terabytes large, but as ob-
served in practice, they are not accessed uniformly at random.
In real datasets, the access pattern of these embeddings varies,
generally with a small portion of embeddings being accessed
far more frequently than others [2]. Existing methods [10]
have explored the usage of distributed communication to
decrease the communication cost, but the theoretical bounds on
communication efficiency has not been analyzed in previous
work. In addition, there has been no existing work exploring
how various methods of distributing embeddings across GPUs
and CPUs impact the system performance.

To summarize, our contributions are as follows:
1) We develop a simple framework to calculate the ex-

pected communication cost under a training regime. And
we expand this framework to address considerations
such as determining the optimal levels of communication
and caching, as well as methods for adjusting them
accordingly.

2) We use the above framework to obtain communication
strategies that can minimize expected communication

cost without caching. We also demonstrate that these
methods also decrease main memory I/O proportionally
to the decrease in communication.

3) We demonstrate how assumptions about ML training
motivate different strategies for caching through empir-
ical analysis with our framework.

4) We extensively test our algorithms on a variety of
datasets and models. Furthermore, we also test various
theoretical distributions, and observe that that our algo-
rithms can generalize well, with performance gains on
a wide range of potential synthetic datasets.

II. METHODOLOGY

As shown in Fig. 1, the existing training paradigm for the
above model is as follows

1) A batch of training examples is retrieved
2) For every training example, the embeddings are retrieved

from embedding tables in main memory
3) The batch of embeddings is sent to the GPU

Fig. 1. Existing training paradigm without coalescing.

In the following chapters, we will analyze the communica-
tion cost of the embedding layers of the recommendation sys-
tems and propose algorithms that maximize throughput subject
to memory, computation, and communication constraints.

A. Coalescing on device

To start, we wish to estimate how much overlap exists per
batch of the dataset. To do so, we want to find the expected
number of unique elements in the list and the expected total
communication given a batch size b. If we transmit the batch
of b training examples, the communication cost per feature is
b ∗ d, where d is number of lookups per sample. We call this
”communicating the batch”, as we send over the entire batch.

As depicted in Fig. 2 we can alternatively coalesce the
embeddings into a list of unique embeddings in the batch
as well as there indices. For embedding e, let P (e) be the
probability that e refers to a categorical feature in a training
example chosen uniformly at random from the dataset. The
likelihood that e is transmitted within our batch is computed
by taking complement of the probability that no embedding
for that feature in our batch is e:

1− (1− P (e))b (1)

Using (1), if E is the set of possible embeddings for this fea-
ture, we can then find our expected embedding communication
cost as: ∑

e∈E

1− (1− P (e))b (2)

In addition to transmitting the unique embeddings as de-
scribed in (2), we also have to transmit the indices of each
embedding. This means that we have a constant b cost. As a
result, our net cost is

b+
∑
e∈E

1− (1− P (e))b (3)

We call this method ”coalescing” because coalesce, or
combine distinct, embeddings for each feature.

Fig. 2. Training paradigm with coalescing.

B. Caching on device

We can also use the GPU as a cache for our embeddings as
described in Fig. 3, we examine several ways of determining
what embeddings to store on GPU.

Fig. 3. Training Framework with Caching Mechanism.

The first method: minimize communication bandwidth per
epoch. For this method, we assume that the batch size is
sufficiently large on GPU to saturate communication during
training, and as a result the time it takes to execute computa-
tions using larger batch sizes is proportional to the batch size
itself. As a result, the expected time spent on computation per
epoch is constant, and the primary source of change in the
latency how much time is spent on communication per epoch.

We shall let the number of samples in the dataset be Q,
batch size b, and the lookups per sample be d. Our expected
communication cost is equal to the expected number of batches
times the expected communication per batch. Without caching
or overlap, this is equal to:

Q

b
× b× d = Q× d (4)

If we exploit the overlap between lookups, the communica-
tion cost changes to

Q+
Q

b
(
∑
e∈E

1− (1− P (e))b)× d (5)

The first term in (5) represents the cost of sending indices,
while the second term is the cost of sending the embeddings.
Generally speaking, the communication cost without caching
will decrease as batch size increases, but the memory re-
quirements will also increase. The tradeoff between these two
values depends on the distribution of embeddings.

If we utilize the remaining memory to cache embeddings,
we can remove the communication cost of embeddings that
are cached on device. Let the set of embeddings cached on
device be C

Q+
Q

b
(
∑

e∈E/C

1− (1− P (e))b)× d (6)

However, due to the fact that we have limited memory there
is a direct trade off between the batch size and the number of
cached embeddings.

As a result, if we model the memory usage of the cached
embeddings, we can theoretically calculate the largest potential
batch size on device. While in practice compilers do not allo-
cate memory with this theoretical efficiency, it helps illustrate
the mathematics of the tradeoffs. Define the total number of
parameters that can fit on device to be M , the parameters used
for running the model per sample to be a, i.e. space taken up
by both model’s weights, biases and also space required for
intermediate activations of a single sample. Then, given that
|C| embeddings are cached, and each take up d parameters on
device, as before, the maximum batch size possible is

b =
M − |C|d

a
(7)

This introduces a tradeoff between the amount of communi-
cation saved by overlap and the amount of communication
saved by caching, because the higher our batch size is the
more overlap will occur but the less memory will be available
for caching.

In order to understand the efficacy of this tradeoff, we need
to examine the relative change in communication from caching
one additional embedding, e′.

Let C be the current set of cached embeddings and b be the
maximum batch size with C cached.

Let C ′ = C ∪ e′, b′ be be the maximum batch size with C ′

cached,
If we store e′, our expected decrease in communication cost

is 1− (1− P (e))b, which is the likelihood e′ is in a batch.
However, using (7), our expected batch size decreases by

b− b′ = d
a , or the size of one embedding divided by the size of

activation. This both decreases communication and decreases
potential overlap, using (6) and (7), we can mathematically
say that

∆communication/epoch = commn1 − commn2 (8)

where,

commn1 =

∑
e∈E/C′(1− (1− P (e))b

′
)×Q

b′
(9)

commn2 =

∑
e∈E/C(1− (1− P (e))b)×Q

b
. (10)

For the communication to decrease, we need (8) to be
negative. We can separate out the term for e′ to get that

(1− (1− P (e′))b) ≥ t1 (11)

where

t1 =
∑

e∈E/C′

(b(1− (1− P (e))b
′
)− b′(1− (1− P (e))b))

b′

(12)
When M >> a > d, or when available memory is

significantly larger than the memory needed for running model
on a one sample, and the memory needed for running model
on a single sample is larger than the memory needed for an
embedding, caching generally improves performance in use
cases where the dataset is randomized, such as offline training.
Because this equation minimizes communication bandwidth,
it only serves as an accurate model of communication when
communication is dominated by bandwidth.

In practice, this means the caching generally decreases the
cost of communication relative to relying on coalescing for
large batch size training.

In addition to using this to understand the tradeoff between
the batch and the number of cached embeddings, it is possible
to find the theoretically optimal number of embeddings to min-
imize communication bandwidth in O(log(|E|)) steps using
binary search. However, the embedding memory and activation
memory need to be measured empirically, as existing machine
learning platforms often allocate more memory than necessary
to improve performance.

Furthermore, (13) is also a good proxy for the expected
number of accesses to main memory for embeddings. This is
because cache performance for these embeddings are poor, and
as a result most embeddings communicated over the channel
are looked up in main memory.

(1− P (e′))(b−b′) ≥ d

M − |C ′|d
∑

e∈E/C′

(13)

If the batch size is too small to saturate computation after
communication, the size of the cached set can be determined
through measuring the runtime of the model on various splits
of the data. This is much more time intensive, but can
potentially lead to more accurate results.

When analyzed with the different dataset distributions, our
method displays strong theoretical performance. We use three
distributions, Zipf distribution (P (x) ∼ 1/x = e−log(x)),
exponential distribution (P (x) ∼ 1/x = ex), and half normal
distribution (P (x) ∼ 1/x = e−x2

), to scale to 5× number
of embeddings and 5× batch size. Half normal distribution is
of particular importance since Criteo Terabyte Dataset is most
similar to that distribution. With our method, the total commu-
nication cost increases by < 1.5× for the exponential and the
normal distributions and by < 2× for Zipf distribution while

with prior methods, the total communication cost increases by
5×. That is a 3× increase in theoretical performance.

III. EXPERIMENT SETTINGS

We evaluate our method using DLRM [1] on the Criteo
Terabyte Dataset. Since our method and our theoratical frame-
work is applicable to any arbitrary distributed system that use
lookup tables, we expect the same performance gains if we
have used TBSM [6] on the Alibaba UBA dataset.

Both models, for their respective dataset, are usually trained
on CPUs. This is due to the limited memory availability for
GPU training.

We compare our method against baseline Deep Learning
Recommendation Model (DLRM) implementations that use
only CPUs or a combination of CPUs and GPUs without
caching. The CPU-only setup processes the entire computation
graph, including the DNN’s large tensor operations, on the
CPU—tasks for which the CPU is not optimized. The CPU-
GPU setup assigns the memory-intensive embedding layer to
the CPU and the compute-intensive DNN layers to the GPU,
resulting in CPU-GPU communication overhead during the
backward pass and when handling intermediate results, which
extends the training time.

The effectiveness of caching hot embeddings in mini-
batches hinges on using only the cached (hot) embeddings
and avoiding the cold embeddings stored on the CPU, thus
eliminating data shuffling between the CPU and GPUs during
the embedding layer. While it’s unrealistic to expect all mini-
batches to require only hot embeddings, it is feasible to ensure
that most do. This is achieved by classifying training samples
into ”hot” (those that only need hot embeddings) and ”normal”
(those that require both hot and cold embeddings). We can then
create mini-batches exclusively composed of hot samples, and
others of normal samples. Given that hot samples generally
predominate, this method maximizes the use of cached embed-
dings. This classification involves constructing a ranked skew
table for all embeddings, selecting the top few embeddings for
caching, and then categorizing training samples based on their
dependency on these cached embeddings.

For all of the experiments, we benchmark the iteration time
and the total training time for one epoch.

IV. EXPERIMENTS

We first evaluate our results on the Criteo Terabyte dataset.
For this method, we trained a DLRM model with the default
parameters on two NVIDIA TITAN RTX with 24GB of
memory. For our first experiment, we wanted to devise a
simple experiment to verify the benefit of overlapping and
caching on the iteration time and the total training time for
one epoch. We set the batch size to 2048 for all runs, and we
cache 256MB of the hot embeddings with our method.

From the Table I, we can see that models with caching and
coalescing achieve large performance improvements relative to
baselines. We even argue that without caching, the CPU-GPU
implementation is worse than the CPU only implementation.
This means that the state-of-the-art implementations cannot

utilize the hardware accelerators, leading to scalability prob-
lems; while, caching enables us to integrate fast accelerators
into deep recommendation systems training by avoiding CPU-
GPU communication.

TABLE I
COMPARING TOTAL TIME IN SECONDS AND ONE EPOCH FOR THE TWO

BASELINES AND OUR METHOD WITH COALESCING AND CACHING.

Method One Iteration (s) One
Fwd Bckwd Optzn Total Epoch(m)

CPU-only 12.05 15.1 41.94 69.09 38.03
CPU-GPU baseline 20.37 19.14 54.17 93.68 46.12

SCARS (ours) 50.88 5.36 0.41 56.65 27.12
Note: Fwd, Bckwd, Optzn means Forwad, Backward, Optimization

For our second set of experiments, we wanted to see if
caching more embeddings meant better performance. For that,
we set the batch size at 2048 and changed the GPU memory
allocated for caching the hot embeddings. From Table II, in
each case when compared with CPU-GPU baseline, we see
major savings in backward pass and optimization stages of
one iteration, and the savings across different GPU memory
settings are very similar. This is to be expected since our first
experiment showed that caching hot embeddings significantly
improves these stages thanks to decreased DRAM memory
writes. However, forward time increases drastically and almost
directly proportionally as the memory cached hot embeddings
increase. As a result, the forward time dominates the total
iteration time.

TABLE II
THE ABSOLUTE TIME IN SECONDS FOR ONE ITERATION OF SCARS WITH

DIFFERING MEMORY ALLOCATED FOR CACHED HOT EMBEDDINGS.

Method One Iteration (s)
Fwd Bckwd Optzn Total Time

CPU-GPU baseline 20.37 19.14 54.17 93.68
128MB 26.65 4.13 0.39 31.23
256MB 50.88 5.36 0.41 56.65
512MB 108.46 5.79 0.42 114.75

1024MB 191.75 5.03 0.44 197.22
Note: Fwd, Bckwd, Optzn means Forwad, Backward, Optimization

Such a pattern is caused by the increased size of the
embedding lookup layer: As we cache more embeddings, the
size of this layer increases. Since retrieving the embedding
indices from a large lookup layer is slower, the forward time
of the network, which is bounded by this lookup operation,
increases. Hence, we conclude that we cannot just cache as
many embeddings as we want and that we need a more
intelligent way to cache hot embeddings.

Driven by the question of the optimal size of the cached
hot embeddings, we analyzed how much of the cached em-
beddings in the 512MB setting from the previous experiment
were frequently accessed by a batch of 1024 random training
samples. We looked at the four 128MB portions of the 512MB,
with the first portion containing the ”hottest” cached embed-
dings and the last portion containing the least hot embeddings.
As can be seen from the Figure 4, almost all of the samples
in the batch accessed the first and the second portions while

the third and the last portions were rarely or even never
accessed. Thus, the last two 128MB portions are not really
”hot” embeddings, and so caching them is unnecessary. All in
all, increasing the memory for cached embeddings excessively
causes us to cache cold embeddings and unnecessarily slow
down the forward pass of the embedding layer. Thus, the
best practice is to profile our data beforehand and see how
much memory is really needed for cached embeddings. For our
experiments, we decided to cache 256MB of hot embeddings.

0 - 1 2 8 1 2 8 - 2 5 6 2 5 6 - 3 8 4 3 8 4 - 5 1 2
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Nu
mb

er
of

Ho
t S

am
ple

s

C a c h e d M e m o r y S i z e (M B)

 6 4 - 1 2 8 M B
 3 2 - 6 4 M B
 1 6 - 3 2 M B
 8 - 1 6 M B
 4 - 8 M B
 2 - 4 M B
 0 - 2 M B

Fig. 4. The number of samples using cached embeddings in a mini-batch of
size 1024 from the Criteo Terabyte Dataset varies with the memory size. The
0-128MB range, containing the ”hottest” embeddings, is used by almost all
samples in a mini-batch, whereas the 128-256MB and 384-512MB ranges,
representing progressively ”colder” embeddings, see significantly less usage.
The least hot 128MB range is seldom or never used. This data suggests that
caching need not be indefinite, as caching colder embeddings eventually uses
up lots of memory space without proportional usage benefits.

Our next set of experiments in which we varying the batch
size showed that caching hot embeddings allows us to have
larger batch sizes, as can be seen from the Table III. For a
”normal” iteration, that is an iteration that accesses both the
hot and the cold embeddings, larger batch size means dra-
matically slower backward pass and optimization stages since
a larger batch size means more DRAM writes which can be
inferred from Table IV. Thus, state-of-the-art implementations
use a batch size no larger than 2048. For a ”hot” iteration,
that is an iteration that accesses only the cached embeddings,
we found that increased batch size doesn’t affect the iteration
time. The reason for such performance gain is that caching
embeddings have major savings in backward and optimization
stages already due to decreased DRAM writes and that since
we now can limit the embeddings layer to an intelligent size
(we choose 256MB for Criteo Terabyte Dataset), the time for
forward pass doesn’t change much with increased batch size.

We also note the total time for one epoch of Criteo Terabyte
with varying batch sizes in Table V and see that caching
hot embeddings allows us to use large batch sizes, which
greatly improves the training time. However, after some very

TABLE III
THE ABSOLUTE TIME IN SECONDS FOR ONE ITERATION OF SCARS WITH

DIFFERING BATCH SIZES

Method One Iteration (s)
Forward Backward Optimization Total Time

2048 50.88 5.36 0.41 56.65
4096 54.23 8.14 0.62 62.99
8192 51.60 10.43 0.88 62.91
16384 54.70 19.14 1.56 75.4

TABLE IV
THE ABSOLUTE TIME IN SECONDS FOR ONE ITERATION OF THE BASELINE

CPU-GPU IMPLEMENTATION WITH DIFFERING BATCH SIZES

Method One Iteration (s)
Fwd Bckwd Optzn Total Time

2048 20.37 19.14 54.17 93.68
4096 26.71 25.04 95.81 147.56
8192 40.06 74.81 149.52 264.39
16384 72.21 139.84 253.36 465.41

Note: Fwd, Bckwd, Optzn means Forwad, Backward, Optimization

large batch size, increasing the batch size indefinitely doesn’t
correspond to equally greater performance gains.

TABLE V
THE ABSOLUTE TIME IN MINUTES FOR ONE EPOCH OF BASELINE

CPU-GPU IMPLEMENTATION AND SCARS WITH 256MB OF CACHED
HOT EMBEDDINGS

Method Batch Size
2048 4096 8192 16384 32768

CPU-GPU baseline 46.12 38.33 35.54 30.10 -
256MB Cached SCARS 27.12 15.10 7.54 4.52 4.31

From Table VI, we can see that although first few increases
in the batch size reflect as remarkable gains (a speed up of
3.6× from 2048 to 8192), the next few increases don’t show an
equally great gain (a speed up of 1.7× from 8192 to 16384).
Hence, it is not essential to increase the batch size indefinitely
further than some point.

TABLE VI
SPEEDUP RATIO AT P TO Q I.E. TOTAL TIME IN ONE ITERATION FOR

BATCHSIZE P TO TOTAL TIE IN ONE ITERATION FOR BATCHSIZE Q

Batch Size Speedup (s) for one iteration of SCARS
4096(p) 8192(p) 16384(p)

2048(q) 1.8 3.6 6.01
4096(q) - 2 3.342
8192(q) - - 1.7

Speedup(p/q) = (Absolute Time for one iteration at Batch
Size p) /(Absolute Time for one iteration at Batch Size at q

Next, we wanted to analyse at how increasing the batch
size of SCARS affects convergence and training accuracy. We
keep the memory used for cached embeddings constant and
this is considerably less than the device memory; therefore, we
can technically indefinitely increase the batch size. Since our
method mainly focuses on improving performance in terms of
time and efficiency, we let models with different batch sizes
train for an absolute time of 10 hours rather than using some

certain epoch count since, as shown before, the time for an
epoch for different batch sizes is not the same. These time
frames, as a result, would mean more epochs for large batch
sizes while it only corresponds to a few epochs for smaller
ones. Our experiments showed that after you increase the
batch size too much, although the speed and efficiency gains
are remarkable, the model cannot converge as fast. Since the
size of mini-batches essentially determines the frequency of
updates, very large mini-batches correspond to fewer updates
and therefore to slower convergence; therefore, it is best to
choose large batch size reasonably since a slow convergence
is suboptimal. This finding, when paired with our previous
finding that increasing the batch size after some point doesn’t
correspond to equally great performance gains in terms of
speed, leads us to such insights: Since increasing the batch
size ”too much” ceases to offer striking speed ups in training
time and also slows down convergence, it is suboptimal to
increase the batch size indefinitely. Besides, we found that
too large batch size training is more prone to overfitting.

Since after 10 hours, the models with reasonable batch sizes
(2048-8192) are all close to convergence (they are very far
into their training), their accuracy are all high and close to
each other as well; hence, we can’t really observe the speed
at which the model initially gets close to a minima, which
usually happens in the first few iterations of the training. This
initial stage is the defining factor for measuring the speed of
convergence since the most accuracy gains happen here. Thus,
we need to see which model has a faster initial stage than the
others, and for that matter, we need a shorter time frame. We
chose a time frame of 1 hour to repeat the experiment and
observed if SCARS with large batch sizes converge faster.
This time, however, the difference between the small and
large batch sizes were greater and more stark. As can be
seen from Table VII, we found that reasonably large batch
size schemes converge faster than the model with a batch size
of 2048; indeed, SCARS with a batch size of 8192 achieves
0.214% increase in accuracy compared to 2048; similarly,
4096 achieves 0.06% increase in accuracy. The model with
2048 batch size can only close this accuracy gap after ∼ 1.6
more hours of training. This further shows that SCARS is able
to train faster with large batch sizes and is time-friendly. This
could prove to be very beneficial for commercial scenarios
where the training time is limited and for research purposes
where you would want to get quick results (or any kind of
situation in which waiting for one day is not optimal).

TABLE VII
TEST ACCURACY AFTER 1 AND 10 HOURS OF TRAINING

Speedup (s) for one iteration of SCARS
2048 4096 8192 16384 32768 65536

1 hour 80.510 80.573 80.724 80.457 80.066 79.587
10 hours 81.171 81.168 81.176 81.094 81.021 80.816

Consequently, when the hot embeddings are intelligently
cached and therefore when we can use a reasonably large
batch size, our method greatly reduces the training time with
a faster convergence by achieving up to 6× speed up from

Table VI compared to the CPU-GPU baseline implementation
of DLRM.

V. CONCLUSION

In this work, we develop a handy framework that can model
the communication cost of various distributed systems. Based
on that, we are able to minimize the expected cost by applying
wise communication strategies for large recommendation sys-
tem training. Specifically, our method utilizes the overlapping
embeddings to transmit only the unique embeddings with their
indices for each feature. We call this ”coalescing.” The other
method utilizes the GPU as a cache for hot embeddings. We
investigate several ways to determine which embeddings to
store on GPU and come up both with a theoretical answer
(the tradeoff between batch size and the size of the cached
embeddings) as well as theory-inspired experimental solutions.
As a result, our method generalize well to different datasets
and systems with different memory constraints. Furthermore,
our PyTorch implementation shows up to 6× improvement on
the training and convergence time of massive GPU systems,
for both the Criteo Terabyte and Alibaba User Behavior
datasets.

REFERENCES

[1] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sun-daraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep learning rec-
ommendation model for personalization and recommendation systems.
arXiv preprint arXiv:1906.00091, 2019.

[2] Saurabh Agarwal, Chengpo Yan, Ziyi Zhang, and Shivaram Venkatara-
man. Bagpipe: Accelerating deep recommendation model training. In
Proceedings of the 29th Symposium on Operating Systems Principles,
pages 348–363, 2023.

[3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar
Chandra, Hrishi Aradhye,Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. Wide & deep learning for recommender systems.
In Proceedings of the 1st workshop on deep learning for recommender
systems, pages 7–10, 2016.

[4] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, et al. Dapple:
A pipelined data parallel approach for training large models. In Proceed-
ings of the 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 431–445, 2021.

[5] Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park, and Hec-
tor Yuen. Post-training 4-bit quantization on embedding tables. arXiv
preprint arXiv:1911.02079, 2019.

[6] Tigran Ishkhanov, Maxim Naumov, Xianjie Chen, Yan Zhu, Yuan Zhong,
Alisson Gusatti Azzolini, Chonglin Sun, Frank Jiang, Andrey Malevich,
and Liang Xiong. Time-based sequence model for personalization and
recommendation systems. arXiv preprint arXiv:2008.11922, 2020.

[7] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter
Abbeel, Joseph E Gonzalez, Ion Stoica, and Kurt Keutzer. Checkmate:
Breaking the memory wall with optimal tensor rematerialization. In Pro-
ceedings of Machine Learning and Systems, volume 2, pages 497–511,
2020.

[8] Shiwei Li, Huifeng Guo, Xing Tang, Ruiming Tang, Lu Hou, Ruixuan
Li, and Rui Zhang. Embedding compression in recommender systems:
A survey. ACM Computing Surveys, 56(5):121, 2024.

[9] Chunxing Yin, Bilge Acun, Carole-Jean Wu, and Xing Liu. Tt-rec:
Tensor train compression for deep learning recommendation models.
Proceedings of Machine Learning and Systems, 3:448–462, 2021.

[10] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding,
Mingming Sun, and Ping Li. Distributed hierarchical gpu parameter
server for massive scale deep learning ads systems. Proceedings of
Machine Learning and Systems, 2:412–428, 2020.

