
Advancing Authorship Attribution: A Phonetic
Encoding and Fusion Approach

Arjun Ramesh Kaushik, Sunil Rufus, Nalini Ratha

University at Buffalo, The State University of New York, Buffalo, USA
{kaushik3, sunilruf, nratha}@buffalo.edu

Abstract—With the advent of Generative AI, machines are
now able to replicate/generate multi-modal data. Deepfake videos,
fake news, and fake audio have become increasingly common to-
day. This brings us to the question: how do we distinguish genuine
information/data from the fake ones? To this end, in this paper,
we propose a combination of character encoding scheme and
embedding fusion focused on discerning AI-generated text and
human-authored text. Inspired by Chaos Game Representation
(CGR), we propose an encoding scheme based on the phonetic
sounds of each character. With either CGR or Phonetic Encoding
scheme, we can represent text as a sequence of 0’s and 1’s. We
reshape the linear representation as a 2D representation, before
processing them as images. Additionally, we use the embedding
fusion method to aid the authorship attribution classification task
on texts of variable length. Through extensive experimentation,
we show that using the Phonetic Encoding scheme along with
embedding fusion achieves better results than CGR on the
authorship attribution task on two publicly available datasets.

Index Terms—Generative AI, Large Language Models, Trust-
worthy AI

I. INTRODUCTION

In recent years, advancements in Generative AI have trans-
formed the world, enhancing the diversity, control, and quality
of data produced by these models. Large Language Models
(LLMs) are at the forefront of this change. Notable examples
such as OpenAI’s ChatGPT, Google’s Gemini, and Meta’s
Llama showcase exceptional performance across various tasks,
including answering questions, composing emails, essays, and
code snippets. However, while these advancements usher in
a new era of human-like text generation, they also raise
significant concerns regarding the detection and mitigation of
potential misuse of LLMs.

LLMs have infiltrated every corner of society with students,
developers, researchers, and reporters, all turning towards
them [1] [2] [3]. Instances have arisen where educational
institutions have banned ChatGPT due to fears of its potential
to facilitate cheating in assignments [1] [2]. Additionally,
media reports have drawn attention to the proliferation of fake
news generated by LLMs [3]. Of late, there have been growing
concerns that researchers are frequently using LLMs to write
research papers. These concerns have understandably cast a
shadow over the application of LLMs, particularly in critical
domains like media and education.

Technology to discern LLM-generated texts is the need
of the hour to mitigate potential consequences associated

with the misuse of LLMs. With the ability to distinguish
between human-authored and LLM-generated text, there is
transparency in an author’s work. In addition, it can greatly
enhance trust in LLMs and encourage wider adoption. Simi-
larly, effective text detection mechanisms can assist developers
and researchers in tracking generated texts and preventing
unauthorized usage [1] [2] [3].

Given the critical significance of accurate LLM-generated
text detection, we propose a novel encoding technique to
represent text as images through a Phonetic Encoding scheme.
In each case, the text is converted to a numerical form through
a unique representation mapping and split into chunks of size
32 x 32. We follow the CGR paper [4] and stick with the
recommended size of 32 x 32, as shown in Fig. 2. The chunks
are accumulated as channels of the image representing the
text. Binary classification is performed as shown in Fig. 1.
In addition to Phonetic Encoding, we also utilize embedding
fusion during testing, making our approach feasible on texts
of variable length. Features extracted from the channels of
the image (representative of the text) are averaged before
performing binary classification using a simple neural network.
Results show that Phonetic Encoding and embedding fusion,
together, yield a superior performance than CGR.

The rest of the paper is structured in the following way.
Section II provides a basis to help understand CGR and
Phonetic Encoding schemes. We dive into the past and recent
research contributions in solving the authorship attribution task
in Section III. A detailed overview of the dataset is shown
in Section V. Sections VI and VII provide methodology and
results in support of our approach.

II. BACKGROUND DETAILS

A. Chaos Game Representation (CGR)

The concept of Chaos Game Representation (CGR) was
introduced by Jeffrey in 1990 and further elaborated upon in
1992 [5]. This technique offers a visualization method for the
structural analysis of DNA sequences. It begins with a square
with corners labeled A, C, G, and T, and the starting point is
the center of this square. Subsequently, each nucleotide in the
sequence is represented by plotting a point equidistant between
the current nucleotide’s corner and the starting point, thereby
forming a sequence of points. When the resulting image is
formatted as a square with dimensions of 2k × 2k pixels, it’s
been shown that each pixel represents a unique k-mer.



Fig. 1. An overview of the proposed authorship attribution framework.

The grayscale intensity of each pixel reflects the frequency
of occurrence of its corresponding k-mer within the DNA
sequence relative to the total count of k-mers. Different
species’ DNA sequences produce distinctive patterns in CGR
images, ranging from simple shapes like triangles or rectangles
to more intricate fractal structures [6].

An alternative method known as Frequency Chaos Game
Representation (FCGR) [7] [8], offers a modification of the
CGR approach. FCGR retains equivalence with CGR when
pixelation levels are consistent, but it offers improved compu-
tational processing ease. In FCGR, a k-th order representation
of a sequence is achieved through a 2k × 2k matrix, where
each element represents the number of points located within
the corresponding grid square.

FCGRk+1(s) is defined by updating each element in the
previous FCGRk(s)(s) with specific values. In FCGR images,
words with higher frequencies are depicted with darker pixels,
reflecting their higher intensity, making it easier to identify
patterns and significant features within the DNA sequence [7].

B. Phonetic Encoding

Name Matching [9] is a commonly employed technique to
check if multiple name strings refer to the same entity. It
employs various techniques such as Phonetic Encoding and
Pattern Matching. Phonetic Encoding aims to represent names
based on their pronunciation, grouping names with similar
sounds. On the other hand, Pattern Matching focuses on
comparing the arrangement of characters in names, typically
used in fuzzy string matching. Another method for Name
Matching is the lexicographic technique, which considers all
possible orthographic variations, alternative forms of actual
names, and initials to identify matches.

In this paper, we employ Phonetic Encoding, which con-
verts names into codes based on their pronunciation. Despite
differences in spelling, names with similar sounds are assigned
the same code. This approach is effective for handling spelling
variations in names. Soundex is a commonly used algorithm
for this purpose, with later algorithms like DoubleMetaphone,
Phonex, Phonix, and NYSIIS building upon its principles
[10] [11]. The English language can be categorized into 44
Phonemes, Underhill 2008. We merge the 44 categories based
on overlap and reduce the categorization to 10. The non-
alphabets and punctuations are categorized into 2 separate

categories, thus, making it a total of 12 as shown in Table
II.

III. RELATED WORK

The concept of authorship attribution using BERT embed-
dings has been effectively demonstrated by many researchers.
PART [12] and BertAA [13] shows how BERT embeddings
can be used to grasp authors’ writing styles and generate
stylometric representations. [14] explores Siamese Networks
for authorship attribution (AA), comparing their effectiveness
with BERT fine-tuning.

Previous works such as [15] [4] [16] use traditional machine
learning algorithms for classification on datasets of limited
scope - comparison between human-authors or consider just a
single LLM. [17] discusses the application of Convolutional
Neural Networks (CNNs) in character-level signal processing,
serving as a motivation for our work.

The studies [18] and [19] explore the detection and regula-
tion of AI-generated text, particularly in the context of scien-
tific writing. In [18], a dual approach is introduced, employing
feature-based methods to categorize aspects like Writing Style
and Coherence, alongside neural network-based fine-tuning of
a GPT-2 output detector model using RoBERTa, achieving a
94.6% F1 score. Conversely, [19] provides a broader overview
of detection techniques, encompassing black-box methods
relying on API-level access and deep learning approaches
involving fine-tuning LLMs like RoBERTa. It also discusses
white box methods, including post-hoc rule-based and neural-
based approaches, as well as inference-time watermarking
techniques for modifying word selection during text gen-
eration. Together, these studies contribute to understanding
and regulating AI-generated text in scientific writing, offering
insights into both specific detection methodologies and broader
frameworks for control and regulation.

IV. DATASET

In this research, we consider two datasets - Human vs
LLM text [20] and the dataset from Authorship Attribution for
Neural Text Generation (AANTG) [21]. The AANTG dataset
is balanced as shown in Table IV, whereas the Human vs LLM
dataset is highly imbalanced. Hence, we balance the dataset
by randomly sampling n texts from human-authored texts,



TABLE I
ENCODING TECHNIQUE ADAPTED FROM CGR AS BASE4 REPRESENTATION

Characters Base4 Representation Binary Representation
’h’, ’j’, ’g’ 00 0000

’i’, ’y’ 01 0001
’t’ 02 0010

’m’ 03 0011
’l’, ’r’ 10 0100

’a’ 11 0101
’ ’ 12 0110
’s’ 13 0111
’e’ 20 1000
’n’ 21 1001

’0’,’1’,’2’,.....’*’, ’/’, etc 22 1010
’u’ 23 1011

’b’, ’d’, ’p’ 30 1100
’f’, ’v’, ’w’ 31 1101

’c’, ’k’, ’q’, ’x’, ’z’ 32 1110
’o’ 33 1111

TABLE II
OUR PROPOSED PHONETIC ENCODING TECHNIQUE ADAPTED FROM NAME MATCHING

Characters Decimal Representation Binary Representation
’b’ 1 0001
’d’ 2 0010

’f’, ’v’ 3 0011
’g’, ’j’, ’h’, ’w’, ’u’, ’o’, ’y’, ’i’, ’a’, ’e’ 4 0100

’k’, ’q’, ’x’, ’s’, ’c’, ’z’ 5 0101
’l’ 6 0110

’m’, ’n’ 7 0111
’p’ 8 1000
’r’ 9 1001
’t’ 10 1010
’ ’ 11 1011

’0’,’1’,’2’,.....’*’, ’/’, etc 12 1100

where n is equal to the number of LLM-generated (GPT
/ Llama / Flan / Mistral / OPT) texts in consideration.

The Human vs LLM text dataset is a compilation of texts
generated from 63 different LLMs. From the 63 LLMs,
we pick texts generated from 4 different LLMs for our
experiments. We balance the dataset before performing any
experiment. The distribution of the dataset is shown in Table
III.

V. PROPOSED METHODOLOGY

A. CGR encoding

The Chaos Game Representation (CGR) technique [4] cat-
egorizes all alphanumeric characters into 16 distinct groups.
These groups are indexed in base4, as presented in Table I.
Representing text as an image using CGR encoding can be
achieved in 4 simple steps -

1) Substitute the characters with their numerical represen-
tation from Table I

2) Substitute the numbers with their 2-bit binary represen-
tation, i.e., ’a’ is represented as ’0101’.

3) Split the binary representation into equal chunks of size
2k, and pad with ’0’ if necessary.

4) Now, we have a 2k x 2k image of n channels, where n
varies based on the length of input text

The characters of the text are split into chunks of equal size
with padding, if necessary. There is no restriction on the chunk
size, we have chosen 1024 to facilitate the generation of 32 x
32 images. The number of channels for each image will vary
depending on the length of the text and the size of the chunk.

B. Phonetic Encoding

Our proposal, Phonetic Encoding categorizes all alphanu-
meric characters into 12 distinct groups, with decimal repre-
sentations for each group as in Table II. Representing text as
an image using Phonetic Encoding can be achieved in 4 simple
steps -

1) Substitute the characters with their numerical represen-
tation from Table II

2) Substitute the numbers with their 4-bit binary represen-
tation, i.e., ’a’ is represented as ’0100’.

3) Split the binary representation into equal chunks of size
2k, and pad with ’0’ if necessary.

4) We now have a 2k x 2k image of n channels, where n
varies based on the length of input text

Like CGR encoding, the characters of the text are split into
chunks of equal size with padding, if necessary. The channel
count for each image will vary depending on the input text
length and chunk size.



TABLE III
DISTRIBUTION OF KAGGLE’S HUMAN VS LLM DATASET.

Source No. of Samples Min. word count per sample Max. word count per sample
Human 347,692 25 71,543

Flan 45,608 25 905
GPT 75,599 25 3,565

Llama 42,623 25 1770
OPT 80151 25 1044

TABLE IV
DISTRIBUTION OF AANTG DATASET.

Source No. of Samples
Human 1066
CTRL 1066
FAIR 1066
GPT 1066
GPT2 1066
GPT3 1066

GROVER 1066
InstructGPT 1066

PPLM 1066
XLM 1066

XLNet 1066

Fig. 2. Steps to achieve image representation of a given text using the encoding schemes - CGR and Phonetic.

C. Embedding Fusion

With texts of varying lengths, their encoding lengths will
vary as well. To address this we take an innovative approach
- embedding fusion. We perform the following steps -

• We reshape an encoding of size n into 32 x 32 2D arrays,
yielding a shape of (m, 32, 32) for each encoding, where
m can be considered as the number of channels.

• We train a classification model with 1-channel inputs, i.e.,
each embedding of shape (m, 32, 32) will be treated as
m inputs of shape (1, 32, 32) carrying the same label as
shown in Fig. 3.

• During testing as shown in Fig. 4, we average the
feature vector (embedding) obtained from each of these
m channels and perform the binary classification using a
simple multilayer perceptron.

VI. RESULTS

From Tables V and VI, we can see that the Phonetic En-
coding scheme outperforms the CGR encoding scheme. Since
our problem statement corresponds to a binary classification
task, we provide True Positive Rate (TPR), False Positive
Rate (FPR), and Matthews Correlation Coefficient (MCC) as

Fig. 3. During training, each channel of the image (representation of text) is
treated as an independent input.

additional metrics to better understand the performance of our
system. A higher TPR and lower FPR are the desired metrics
for our system. MCC quantifies the correlation between actual
and predicted binary classifications, with values falling within



Fig. 4. During testing, we extract the feature vector (embedding) for each channel of the image (representation of text) and take their mean. Using the
averaged embedding, we perform prediction.

the range of −1 to +1. Positive values highlight high cor-
relation and negative values indicate low correlation between
predictions and actual labels. For binary classification tasks,
MCC serves as a better metric compared to accuracy.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1)

Where,
• TP - True Positives
• TN - True Negatives
• FP - False Positives
• FN - False Negatives

VII. CONCLUSION AND FUTURE WORK

This paper introduces a novel encoding scheme aimed at
distinguishing AI-generated text from human-authored text.
Inspired by the concept of CGR, we propose a character-level
encoding scheme called Phonetic Encoding. Our methodol-
ogy involves transforming the encoded text into 2D arrays,
treating them as images, thereby framing the task as a binary
classification problem on images. Furthermore, we incorporate
embedding fusion, enabling our approach to handle texts of
variable lengths. Through extensive experimentation across
two datasets, we demonstrate that the performance of Phonetic
Encoding, combined with embedding fusion, surpasses that of
CGR. We envision that our framework could be enhanced by
incorporating temporally-aware embedding fusion techniques
and further improve its capability to handle texts of any
length.
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