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Abstract

Recent progress in empirical and certified robustness
promises to deliver reliable and deployable Deep Neural Net-
works (DNNs). Despite that success, most existing evalua-
tions of DNN robustness have been done on images sampled
from the same distribution that the model was trained on. Yet,
in the real world, DNNs may be deployed in dynamic en-
vironments that exhibit significant distribution shifts. In this
work, we take a first step towards thoroughly investigating
the interplay between empirical and certified adversarial ro-
bustness on one hand and domain generalization on another.
To do so, we train robust models on multiple domains and
evaluate their accuracy and robustness on an unseen domain.
We observe that: (1) both empirical and certified robustness
generalize to unseen domains, and (2) the level of general-
izability does not correlate well with input visual similarity,
measured by the FID between source and target domains. We
also extend our study to cover a real-world medical appli-
cation, in which adversarial augmentation enhances both the
robustness and generalization accuracy in unseen domains.

1 Introduction
Deep Neural Networks (DNNs) are vulnerable to small and
carefully designed perturbations, known as adversarial at-
tacks (Szegedy et al. 2014; Goodfellow, Shlens, and Szegedy
2015). That is, a DNN fθ : Rd → P(Y) can produce two
different predictions for the inputs x ∈ Rd and x + δ, al-
though both x and x+ δ are perceptually indistinguishable.
Furthermore, DNNs are found to be brittle against simple
semantic transformations such as rotation, translation, and
scaling (Engstrom et al. 2019). These observations raised
concerns regarding the deployability of DNNs in security-
critical applications, such as self-driving and medical di-
agnosis (Papernot et al. 2016; Finlayson et al. 2019; Ma
et al. 2021). This brittleness provoked several efforts to build
models that are not only accurate but also robust (Gu and
Rigazio 2015). Building robust models is usually achieved
either (i) empirically, where the DNN’s training routine is
changed to include such malicious adversarial examples in
the training set (Madry et al. 2018), or (ii) certifiably, where
theoretical guarantees are given about the robustness of a
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DNN in a region around a given input x (Lécuyer et al.
2019).

Despite great progress in the adversarial robustness lit-
erature on building accurate and robust models, most ap-
proaches are tested on in-distribution data. In other words,
the scenario considered is one in which both the train-
ing and testing sets are independently and identically dis-
tributed (IID). However, this IID assumption rarely holds
in practice, as data in the real world can be sampled from
various distributions with significant domain shifts. For ex-
ample, a deep-learning based medical image classifier may
be trained on data collected from one hospital, but later
deployed in a different hospital (Bándi et al. 2019). Un-
fortunately, DNNs struggle to generalize to out-of-domain
data (Geirhos et al. 2020, 2021), even in the absence of
of adversarial examples. This lack of generalization has led
the research community to invest in the problem of Domain
Generalization (DG). The aim of DG is to learn invariant
representations from diverse distributions of data, denoted as
source domains, such that these representations generalize
to an unseen distribution, known as the target domain (Wang
et al. 2021; Gulrajani and Lopez-Paz 2021). This setup mim-
ics the unexpected nature of real-world distribution shifts,
where models are constantly exposed to novel domains,
and fine-tuning on all these domains becomes impractical.
While there has been effort in improving the generalization
of DNNs (Tzeng et al. 2014; Sun and Saenko 2016; Motiian
et al. 2017; Zhang et al. 2021; Shen et al. 2021; Wang et al.
2021; Zhou et al. 2022), the generalizability of adversarial
robustness to unseen domains remains unexplored.

In this work, we set out to study the interplay between
domain generalization and adversarial robustness. We con-
duct comprehensive experimental studies on five standard
DG benchmarks provided by DomainBed (Gulrajani and
Lopez-Paz 2021) and WILDS (Koh et al. 2021). In our
experiments, we study both empirical and certified robust-
ness against input perturbations and spatial deformations.
We first investigate the generalizability of empirical robust-
ness, which a DNN obtains by employing the popular ad-
versarial training method (Madry et al. 2018) while training
on the source data. We find that, in many scenarios, improv-
ing empirical robustness in the source domain generalizes
to the target domain with little cost on the performance of
the model on unperturbed data. We then inspect the general-



izability of certified robustness against both input perturba-
tions and parametric deformations by employing Random-
ized Smoothing (RS) (Cohen, Rosenfeld, and Kolter 2019)
and DeformRS (Alfarra et al. 2022a). We observe that cer-
tified robustness generalizes to unseen domains when us-
ing randomized smoothing frameworks against pixel pertur-
bations and five different input deformations including ro-
tation, translation, and scaling. To the best of our knowl-
edge, we provide the first large scale experimental analysis
of the generalizability of adversarial robustness to unseen
domains. Our analysis leads to the following contributions:

1. We contrast the behavior of robustness under both trans-
fer learning and domain generalization. Unlike transfer
learning, domain generalization does not always improve
through robust training.

2. We empirically show that visual similarity, between the
source and target domains, does not correlate well with
the level of generalizability to the target domain.

3. We analyze a practical medical application, in which ad-
versarial training in the source domain improves the gen-
eralization of accuracy and robustness in the unseen tar-
get domain.

2 Related Work
Domain Generalization. Domain generalization (DG)
studies the ability of models to learn representations that
can be readily applied to data from unseen domains (Wang
et al. 2021; Zhou et al. 2022). In the DG setup, a model is
trained on multiple source domains and then evaluated on
an unseen target domain, which exhibits a significant shift
from the training domains. DG approaches can be catego-
rized into different groups. (i) Data augmentation techniques
(Gong et al. 2019; Zhou et al. 2020, 2021), (ii) Represen-
tation learning methods (Blanchard, Lee, and Scott 2011;
Nguyen et al. 2021; Lu et al. 2022), and (iii) Learning-
strategy approaches (Li et al. 2018; Carlucci et al. 2019; Cha
et al. 2021). In this work, we study DG from an adversarial
robustness lens. In particular, we analyze both the general-
ization accuracy and robustness of adversarially trained clas-
sifiers on unseen domains.

Adversarial Robustness. Adversarial attacks are imper-
ceptible, semantic-preserving perturbations that can fool
DNNs (Goodfellow, Shlens, and Szegedy 2015; Szegedy
et al. 2014). Given the security concerns that adversarial at-
tacks induced, several works proposed changing the train-
ing routine to enhance model robustness (Madry et al. 2018;
Zhang et al. 2019). While empirical defenses are effective in
enhancing the robustness of the underlying model, such ap-
proaches do not guarantee robustness. As a result, there has
been a growing interest in certifiably robust classifiers, for
which no adversary can exist in a specified region around a
data point (Raghunathan, Steinhardt, and Liang 2018; Mo-
hapatra et al. 2020; Lee et al. 2021). A scalable approach
to achieving certified robustness is Randomized Smoothing
(RS) (Cohen, Rosenfeld, and Kolter 2019). RS constructs a
smooth classifier from any arbitrary base classifier by out-
putting the most probable class when the input is subjected

to Gaussian noise. Recently, DeformRS extended RS to pro-
vide certified robustness against parameterized geometric
deformations (Alfarra et al. 2022a; S. et al. 2022). In this
work, we set out to study the interplay between (empirical
and certified) robustness and domain generalization by de-
ploying adversarial training, RS, and DeformRS.

Adversarial Training in Dynamic Environments. To
improve the ability of machine learning models to learn
generalizable knowledge, researchers have proposed several
problems, such as transfer learning, continual learning, do-
main adaptation, and domain generalization (Zhuang et al.
2020; Delange et al. 2021; Wang and Deng 2018; Wang
et al. 2021). Among these problems, only transfer learning,
where a model pre-trains on tasks with large datasets and
then adapts to downstream tasks with limited data, has been
thoroughly studied under the lens of adversarial robustness.
(Salman et al. 2020) showed that, in terms of downstream
task accuracy, adversarially trained representations outper-
form nominally trained representations. (Utrera et al. 2021)
further explained that adversarial training in the source do-
main increases shape bias, resulting in better transferabil-
ity. Finally, (Deng et al. 2021) provided theoretical justifi-
cation to support these empirical findings. Besides down-
stream task accuracy, (Shafahi et al. 2020) studied the trans-
ferability of robustness itself. Although useful, these transfer
learning results presume fine-tuning on the target domain,
which is infeasible in many real-life scenarios. Table 1 illus-
trates the differences between transfer learning and domain
generalization, which is the setup we adopt. In this paper,
we take a first step to empirically investigate whether adver-
sarial training leads to robust representations that generalize
without requiring prior knowledge of the target domain.

3 Background on Domain Generalization
Domain Generalization Setup. Given an input space X
and a label space Y , one can define a joint distribution
PXY over X and Y . A domain, or distribution, is a col-
lection of samples drawn from PXY . In our setting, the in-
put and label spaces are fixed, but we may have multiple
unique joint distributions. Specifically, we assume that there
are N source domains of varying sizes. For each task n,
Sn = {(xj , yj)}|Sn|

j=1 ∼ P(n)
XY . We denote the training set

by S = {Si|i = 1, . . . , N}. The aim of DG is to use S to
learn a mapping f : X → Y that minimizes the error on
some unseen target domain T ∼ P(N+1)

XY . We enforce that
P(k)
XY ̸= P(n)

XY for k ̸= n, k, n ∈ {1, . . . , N + 1}, which
means that the target domain is distinct from the source do-
mains that are, in turn, also distinct from each other. More
formally, given S, we seek a parameterized model fθ∗ such
that:

θ∗ = argmin
θ

E
(x,y)∼P(T )

XY

[L(fθ(x), y)] , (1)

where L is the cross-entropy loss for the classification task.
Note that the model is not allowed to sample the target do-
main during training, so most methods use the empirical risk
of the source datasets as a proxy for the true target risk. The



Problem Setup Training Data Target Data Problem Condition Access to Target

Transfer learning Ssource, Starget Starget Ysource ̸= Ytarget ✓
Domain generalization S = {Si|i = 1, . . . , N} SN+1 PXY (Sk) ̸= PXY (Sn) for k ̸= n ✗

Table 1: Comparison between Domain Generalization (DG) and Transfer Learning. DG differs from transfer learning in
two ways. 1) The model in DG never sees the target data during training, so fine-tuning on the target is not allowed. 2) The
target labels are kept fixed in DG; however, the target samples are drawn from a domain that is distinct from the source domains.

supervised average risk (E) is given by:

E =
1

N

N∑
n=1

1

|Sn|

|Sn|∑
i=1

[L(fθ(x), y)] (2)

with (x, y) ∼ S. In practice, we define a fixed held-out val-
idation set Sv ⊂ S. The average risk on this source valida-
tion set is used to select the best model, which is evaluated
on the target domain without any fine-tuning steps. In what
follows, Section 4 (and Section 5) investigates the gener-
alizability of empirical (and certified) robustness to diverse
target domains.

4 Empirical Robustness and Domain
Generalization

In this section, we study the generalizability of empirical
robustness methods that enhance the adversarial robustness
of DNNs. We begin with a brief introduction of Adversarial
Training (AT) (Madry et al. 2018), after which we study the
effect of deploying AT in a domain generalization setup.

4.1 Background and Setup
Adversarial Attacks. Adversarial attacks are small im-
perceptible perturbations that, once added to a “clean” input
sample, cause the classifier fθ to misclassify the perturbed
sample. Formally, let (x, y) be an input label pair where fθ
correctly classifies x (i.e. argmaxi f

i
θ(x) = y). An attacker

crafts a small perturbation δ such that argmaxi f
i
θ(x+ δ) ̸=

y, which is usually obtained by solving the following opti-
mization problem:

max
δ

L(fθ(x+ δ), y) s.t. ∥δ∥p ≤ ϵ, (3)

where p ∈ {2,∞}, ϵ > 0 is a small constant that enforces
the imperceptibility of the added perturbation, and L is a
suitable loss function (e.g. Cross Entropy). Let δ∗ be the so-
lution to the problem in Eq. 3, then the adversarial example
is denoted by xadv = x+ δ∗.

Adversarial Training as Augmentation. Adversarial
Training (AT) (Madry et al. 2018) trains the classifier on ad-
versarial examples rather than clean samples. In particular,
AT obtains the network parameters θ∗ by solving the follow-
ing optimization problem:

min
θ

E(x,y)∼D

[
max

δ,∥δ∥p≤ϵ
L(fθ(x+ δ), y)

]
, (4)

where D is a data distribution. In general, the inner max-
imization problem is solved through K steps of Projected

Gradient Descent (PGD) (Madry et al. 2018). While con-
ducting adversarial training enhances the model’s robustness
against adversarial attacks, this usually comes at the cost of
losing some clean accuracy (performance on unperturbed
samples). To alleviate the drop in performance, we follow
the method by (Zhang et al. 2019) and deploy adversarial
training as a data augmentation scheme. In particular, we
obtain network parameters θ∗ that minimize the following
objective:
θ∗ = argmin

θ
E
(x,y)∼P(T )

XY

[λL(fθ(x), y) + (1− λ)L(fθ(xadv), y)] ,

(5)
where λ ∈ [0, 1] controls the robustness-accuracy trade-off.

Training & Evaluation Setup. In our experiments, we
focus on image classification and adopt the framework of
DomainBed (Gulrajani and Lopez-Paz 2021), which is the
standard benchmark in the image domain generalization lit-
erature. All models are initialized with a ResNet-50 back-
bone pre-trained on ImageNet-1K (Deng et al. 2009). We
train all models with adversarial augmentation to minimize
the objective in Eq. 5 on the source domains, where xadv

is computed with a Projected Gradient Descent (PGD) at-
tack (Madry et al. 2018) using 20 PGD steps. The target
domain remains unseen until test time. Specifically, we fol-
low the training-domain validation strategy described in Do-
mainBed for model selection. We experiment with a range of
perturbation budgets (ϵ) on various datasets: PACS, Office-
Home, VLCS, and TerraIncognita (Gulrajani and Lopez-Paz
2021). We report the ℓ∞ results in the main paper, where we
use ϵ ∈ {0, 8/255, 16/255, 32/255}. The appendix includes ex-
periments for ℓ2 perturbations due to space constraints. Note
that for ϵ = 0, the training objective reduces to the empirical
risk minimization in Eq. (2). Each model is trained on one
value of ϵ but is evaluated on all four values of ϵ with 20
steps of PGD attacks. In the following experiments, we fix
λ in Eq. 5 to 0.5 and leave the ablation to the appendix.

4.2 The Generalization of Empirical Robustness
In this section, we investigate the generalizability of empir-
ical robustness to unseen domains. More precisely, we are
interested in understanding the interplay between standard
accuracy and robust accuracy in the scope of source vs. tar-
get domains. We report in Figure 1 the standard accuracy
(first column of each matrix) and robust accuracy against
different values of ϵ on all considered datasets. We further
summarize the clean and robust accuracy at ϵ = 8/255 in Ta-
ble 2 for ease of comparison. Next, we analyze these results
to answer the following questions.

Q1: Do adversarially robust models generalize better
than their standard-trained counterparts? No, which is



Figure 1: Evaluation of ℓ∞ Robustness. We train models in the source domain and evaluate them in both the source and target
domains with different ϵ values. In the Source tables, the (ith, jth) entry represents a model trained with ϵ = i and evaluated on
ϵ = j on samples drawn from source domain. In the Target tables, the (ith, jth) entry is a model trained in the source with ϵ = i
and evaluated on ϵ = j on samples drawn from target domain. No fine-tuning is done in the target domain.

Dataset
PACS OfficeHome VLCS TerraIncognita

Clean Accuracy (%) Standard Model 84.23 60.56 78.15 64.70

Robust Model 84.00 56.89 72.72 60.02

Robust Accuracy (%) Standard Model 40.29 9.91 14.72 0.87

Robust Model 73.54 45.73 62.75 31.04

Table 2: Generalization of Robustly- and Nominally- Trained Models on Various Datasets. Applying adversarial training
on the source domain leads to significant improvements in the model’s robustness in the target domain, relative to the observed
drop in the standard accuracy.

evident from the first two rows of Table 2. With the excep-
tion of the smallest dataset PACS, the clean accuracy of the
robust model in the unseen domain is lower than that of the
standard-trained model by 3.6% or more. 1 Unlike trans-
fer learning, where robust training in the source domain
is favorable, robust training does not improve general-
ization to the target domain if no fine-tuning is allowed.
This result contrasts with findings from the transfer learn-
ing literature, where models trained robustly in the source
domain outperform standard-trained models across a vari-
ety of downstream tasks (Salman et al. 2020). It is espe-
cially surprising given that previous works suggest that ro-
bust training encourages shape bias over texture bias, hint-
ing at better generalization (Geirhos et al. 2019; Utrera et al.
2021). Moreover, (Deng et al. 2021) showed that adversar-
ial training in the source domain results in provably better
representations for fine-tuning on the target domain. Such
seemingly contradictory findings can be reconciled by con-
sidering the key differences between transfer learning and
domain generalization summarized in Table 1. Specifically,
previous works in transfer learning assume that the model
can sample the target domain at some point to perform fine-

tuning. Since domain generalization does not allow access to
the target domain, such benefits are not guaranteed. We en-
courage future works to investigate under what conditions
adversarial training helps the generalization accuracy with
no fine-tuning on the target.

Q2: Does a higher source domain robustness corre-
spond to a higher target domain robustness? As expected,
DNNs lose some robustness when evaluated on a target do-
main that is distinct from the training domains. This observa-
tion is evident by comparing any cell in the top row (Source)
tables in Figure 1 with the corresponding cell in the second
row (Target) tables. For example, the TerraIncognita model,
which is trained and evaluated on (ϵ = 8/255) adversaries,
loses around 35% accuracy when the distribution shifts to
the target domain. Nevertheless, by observing that all the
source and target tables have similar color trends, we find
that 2 higher robustness in the source domain corre-
sponds to higher robustness in the target domain. Our re-
sults suggest that one way to increase the out-of-distribution
robustness of a deployed model is to improve its robustness
in the source validation set, which supports the applicability
of ongoing efforts in adversarial robustness research (Zhang



et al. 2019; Wang et al. 2020; Wu, Xia, and Wang 2020).
Q3: Does the robustness-accuracy trade-off generalize

to unseen domains? As observed in Figure 1, 3 achieving
a more robust model comes at the cost of standard accu-
racy not only in the source domain, but also in the target
domain. Looking at OfficeHome, the target robust accuracy
of a robust model (trained and evaluated on ϵ = 16/255)
is 50% more than that of the standard-trained model. Yet,
the clean accuracy of the robust model is about 6% less than
the standard model accuracy. In general, as the network be-
comes more robust to a particular perturbation budget ϵ in
the source domain, it becomes more robust to adversaries
generated within that budget in the target domain. Neverthe-
less, the performance of the robust network on clean samples
decreases in both domains. Therefore, consistent with the ro-
bustness literature (Tsipras et al. 2019), robustness comes at
the cost of standard accuracy even in the unseen target do-
mains.

5 Certified Robustness and Domain
Generalization

In Section 4, we analyzed the interplay between empiri-
cal robustness (obtained by adversarial training) and do-
main generalization. While empirical robustness studies give
hints about the reliability of a given model under adversar-
ial attacks, they give no guarantees against the existence
of such adversaries. To deploy DNNs in dynamic environ-
ments (Koh et al. 2021), we need robustness guarantees to
carry over into unseen domains. To that end, we study the
generalizability of the certified robustness of DNNs. We de-
ploy Randomized Smoothing (RS) and DeformRS to cer-
tify DNNs against input perturbations and deformations. We
start by giving a brief overview of RS and DeformRS.

5.1 Background and Setup
Certifying Against Additive Perturbations and Input De-
formations. Randomized smoothing (RS) (Cohen, Rosen-
feld, and Kolter 2019) is a method for constructing a
“smooth” classifier from a given classifier fθ. The smooth
classifier returns the average prediction of fθ when the input
x is subjected to additive Gaussian noise:

gθ(x) = Eϵ∼N (0,σ2I) [fθ(x+ ϵ)] . (6)

Let gθ predict label cA for input x with some confidence,
i.e. Eϵ[f

cA
θ (x + ϵ)] = pA ≥ pB = maxc̸=cA Eϵ[f

c
θ (x +

ϵ)], then, as shown by (Zhai et al. 2020), gθ’s prediction is
certifiably robust at x with certification radius:

R =
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
, (7)

where Φ−1 is the inverse CDF of the standard Gaussian
distribution. As a result of Eq. 7, argmaxi g

i
θ(x + δ) =

argmaxi g
i
θ(x), ∀∥δ∥2 ≤ R.

While Eq. 7 provides theoretical guarantees for robustness
against additive perturbations, DNNs are also brittle against
simple input transformations such as rotation. (Alfarra et al.
2022a) extended randomized smoothing to certify paramet-
ric input deformations through DeformRS, which defined

the parametric smooth classifier for a given input x with
pixel coordinates p as follows:

gϕ(x, p) = Eϵ∼D [fθ(IT (x, p+ νϕ+ϵ))] , (8)
where IT is an interpolation function (e.g. bilinear interpo-
lation) and νϕ is a parametric deformation function with pa-
rameters ϕ (e.g. ν is a rotation function and ϕ is the rotation
angle). Analogous to the RS formulation in Eq. 6, g out-
puts the average prediction of fθ over deformed versions of
the input x. (Alfarra et al. 2022a) showed that parametric-
domain smooth classifiers are certifiably robust against per-
turbations to the parameters of the deformation function. In
particular, g’s prediction is constant with certification radius:
R = σ (pA − pB) for D = U [−σ, σ],

R =
σ

2

(
Φ−1(pA)− Φ−1(pB)

)
for D = N (0, σ2I).

(9)
Put simply, as long as the perturbations to the deformation

function parameters (e.g. rotation angle) are within R, the
prediction of g remains constant. In this work, we leverage
RS and DeformRS to study the generalizability of certified
robustness to unseen target domains.
Experimental Setup. To split the data into source and target
domains, we use the Photo, Art, Cartoon, and Sketch distri-
butions from PACS (Li et al. 2017). We use RS to certify
pixel perturbations and DeformRS to certify five input de-
formations: rotation, translation, scaling, affine, and a defor-
mation characterized by a Discrete Cosine Transform (DCT)
basis. Following (Gulrajani and Lopez-Paz 2021), we em-
ploy data augmentation during training and train solely on
the source domains. To evaluate the certified robustness of
the trained classifier, we plot the certified accuracy curves
for both the source and target domains for each considered
deformation. The certified accuracy at a radius R is the per-
centage of the test set that is both classified correctly and
has a certified radius of at least R. We calculate the certified
radius for a given input through either Eq. 7 for pixel per-
turbations or Eq. 9 for input deformations. Here, we report
the envelope plots, which illustrate the best certified accu-
racy per radius over all values of the smoothing deformation
parameter ϕ. We leave the detailed results for each choice of
ϕ to the appendix. We employ Monte Carlo sampling with
100k samples to estimate pA and bound pB = 1 − pA by
following the standard practice (Zhai et al. 2020; Cohen,
Rosenfeld, and Kolter 2019; Alfarra et al. 2022a). Finally,
we follow (Zhai et al. 2020) in reporting the Average Certi-
fied Radius (ACR) of correctly classified samples.

Regarding the architecture, we follow the DomainBed
(Gulrajani and Lopez-Paz 2021) benchmark in selecting
ResNet-50 as a backbone. To assess the effect of deploy-
ing a more powerful architecture on the generalizability to
unseen domains, we further include experiments with the re-
cent transformer model ViT-Base (Dosovitskiy et al. 2021).

5.2 Generalizability of Certified Robustness to
Unseen Target Domains

We investigate under what scenarios the certified robustness
generalizes to unseen domains. We first show how much



Figure 2: Generalizability of Certified Robustness. We
certify ResNet-50 and ViT-Base against pixel perturbations
and input deformations in the source and target domains of
PACS. We observe that 1) certified robustness deployed via
randomized smoothing generalizes to unseen domains, and
that 2) a stronger architecture (ViT-Base) leads to a better
source and target certified accuracy.

certified accuracy (CA) is maintained when the target do-
main exhibits a distribution shift. Then, we study whether a
stronger backbone architecture can boost the CA generaliz-
ability. Finally, we evaluate how well perceptual similarity,
as measured by FID and R-FID (Heusel et al. 2017; Alfarra
et al. 2022c), predicts the generalization of certified robust-
ness.

Q4: Can certified robustness, obtained via random-
ized smoothing, generalize to unseen domains? We train
smooth classifiers on a collection of source domains and
certify the models on both the source and target domains.
The target domains are unseen before certification. We plot
the source CA curve with dashed black lines and the tar-
get CA curve with solid blue in Figure 2, along with the
corresponding ACR. Our results show that 4 a consider-
able portion of the certified robustness, acquired by ran-
domized smoothing, is maintained in the unseen domain.
When certified against pixel perturbations in the unseen do-
main, the average certified radius of ResNet-50 drops by
around 6% only. Utilizing DeformRS, we extend this result
from simple pixel perturbations to geometric deformations,
like scaling and affine transformations. This experiment is
promising, since the models are never trained on the target
data, but still exhibit some certified robustness. This vali-
dates the importance of recent research efforts that improve
on randomized smoothing (Zhai et al. 2020; Alfarra et al.
2022b). To address real-world security challenges, we en-
courage future certified robustness works to conduct experi-
ments on domain generalization datasets.

Q5: Does the target certified accuracy improve when

the feature extractor is improved? To investigate the in-
fluence of the backbone architecture on the certified robust-
ness of a deployed model, we change the architecture from
ResNet-50 to ViT-Base and plot the target CA curve for
ViT-Base in solid blue in Figure 2. We observe that the
target ACR obtained by ViT-Base on PACS is higher than
the target ACR obtained by ResNet-50 across deformations.
5 A significant improvement of the target certified ro-

bustness is achieved by using a stronger backbone archi-
tecture. This result is consistent with the robustness liter-
ature (Gowal et al. 2020), where stronger backbones tend
to exhibit better robustness, and the domain generalization
literature (Gulrajani and Lopez-Paz 2021), where stronger
backbones tend to exhibit better generalization accuracy. We
believe that research on models with better generalization
can lead to better certified robustness in unseen domains.

Q6: Does the generalizability of certified robustness
correlate with the perceptual similarity between the
source and target domains? In all previous experiments,
we considered the average certified accuracy over all pos-
sible target domains. We now conduct a more fine-grained
study to these target domains individually. We measure the
drop in the average certified radius (∆ACR) between the
source and target domains with the perceptual similarity be-
tween both domains captured by FID (Heusel et al. 2017)
and the more robust R-FID (Alfarra et al. 2022c). To that
end, we conduct experiments on PACS where we select one
domain as the unseen target and treat the rest as source do-
mains. We train a classifier on the source data and plot the
certified accuracy curves against scaling and translation de-
formations on both the source and target domains in Figure 3
accompanied by ∆ACR. We also report the FID and R-FID
between the source and target domains. Note that higher
FID/R-FID indicates less similarity of distributions. 6 Per-
ceptual similarity, as captured by FID and R-FID, is not
predictive of performance and robustness generalizabil-
ity. Surprisingly, the photo domain, which has the highest
FID (34.3) and R-FID (87.7) scores, exhibits the largest cer-
tified accuracy generalization. In this case, the ACR for the
target domain is higher than the source domain resulting in a
negative ∆ACR (−0.1 when certifying against translation).
The appendix includes experiments with other deformations
where we observe similar behavior. We regard the develop-
ment of a suitable distribution similarity metric, which better
correlates with the level of generalizability, as an important
research direction.

6 Real-world Application: Medical Images
To demonstrate the applicability of the DG setup to real-
world settings, we investigate the generalization of robust-
ness in medical diagnostics. Data collected by medical imag-
ing techniques, like computed tomography (CT) and mag-
netic resonance imaging (MRI), is susceptible to noise. This
noise includes intensity variations caused by subject move-
ment (Shaw et al. 2019), respiratory motion (Axel et al.
1986), quantum noise associated with X-rays (Hsieh 1998),
and inhomogeneity in the MRI magnetic field (Leemput
et al. 1999). Moreover, due to privacy concerns, a model



Figure 3: Does visual similarity correlate with robustness generalizability? We vary the target domain and plot the certified
accuracy curves for two deformations: scaling and translation. A sample from each domain is shown in the second row. The
FID/R-FID distances between the source domains and each target are reported in the first row. Visual similarity, measured by
FID and R-FID, does not correlate with the level of robustness generalization to the target domain.
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Figure 4: Certified Robustness in the Medical Domain.
The generalization of robustness against pixel variations in
medical images is critical. Yet, there is a gap in certified ro-
bustness when the DNN is deployed in an unseen hospital.

trained in one medical institution should be deployed in an-
other with limited data sharing and retraining (Kaissis et al.
2020; Ziller et al. 2021; Liu et al. 2021). To test the gen-
eralization of robustness in this practical setup, we use the
DG dataset WILDS CAMELYON17 (Bándi et al. 2019; Koh
et al. 2021) to train models on tissue images from four hos-
pitals and evaluate them on images from an unseen hospital.
For the first time, in addition to domain generalization, we
explore robustness in CAMELYON17. The task in WILDS
CAMELYON17 is to predict whether a tissue image con-
tains a cancerous tumor or not.

Adversarial Augmentation for Better Generalizability.
We test the generalization accuracy of a standard-trained
(ϵ = 0) and a robust (ϵ = 8/255) model by following
setup from Section 4. In contrast to the domains studied in
Table 2, adversarial training improves generalization to the
unseen hospital. While the clean accuracy of the standard
model is 94.05%, the clean accuracy of the robust model
is 95.28%. This value is even competitive with the target
accuracy (95.25%) obtained by the popular DG strategy
CORAL (Sun and Saenko 2016). The robust accuracy also

improves from 82.03% to 92.67%. This significant boost in
domain generalization can be attributed to the similarity be-
tween pixel perturbations and the underlying domain shift
in the medical images. We encourage future works to study
different adversarial training methods that go beyond pixel
perturbations, and to propose application-specific augmen-
tations for different distribution shifts.

Certified Robustness. Next, we investigate the general-
izability of certified robustness to the unseen hospital. We
follow the experimental setup in Section 5 and measure the
certified accuracy on the source and target domains. We ob-
serve from Figure 4 that some of the certified robustness
generalizes to the unseen hospital when evaluated with pixel
perturbations and scaling deformations. We include the re-
sults for other deformations in the appendix. We note that the
drop in certified accuracy to the unseen hospital (given pixel
perturbations) is 4 times what we saw in the PACS dataset in
Section 5. This is concerning, as many sources of noise af-
fect medical imaging data, so robust medical diagnostics is
important for real-world adoption of AI for Health. We en-
courage future research to develop better methods to close
the target-source gap in certified robustness.

7 Conclusion
We conducted a large scale empirical analysis to study the
interplay between adversarial robustness and domain gener-
alization. We deployed adversarial training and randomized
smoothing as empirical and certified defenses. We found that
both empirical and certified robustness generalize to unseen
domains. We further included experiments on a real-world
application, where adversarial training benefits both clean
and robust accuracy in an unseen domain. Based on our find-
ings, we encourage more research to understand: (i) under
which conditions robust training improves the generaliza-
tion accuracy, and (ii) what methods can improve certified
accuracy in unseen domains.
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