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Abstract

Mix-up training approaches have proven to be effective
in improving the generalization ability of Deep Neural
Networks. Over the years, the research community expands
mix-up methods into two directions, with extensive efforts
to improve saliency-guided procedures but minimal focus on
the arbitrary path, leaving the randomization domain unex-
plored. In this paper, inspired by the superiority qualities of
each direction over one another, we introduce a novel method
that lies at the junction of the two routes. By combining
the best elements of randomness and saliency utilization,
our method balances speed, simplicity, and accuracy. We
name our method R-Mix following the concept of ”Random
Mix-up”. We demonstrate its effectiveness on generalization,
weakly supervised object localization, calibration, and ro-
bustness to adversarial attack. Finally, in order to address the
question whether there exists a better decision protocol, we
train a Reinforcement Learning agent that decides the mix-up
policies based on the classifier’s performance, reducing de-
pendency on human-designed objectives and hyperparameter
tuning. Extensive experiments further show that the agent is
capable of performing at the cutting-edge level, laying the
foundation of fully automatic mix-up. Our code is released at
https://github.com/minhlong94/Random-Mixup.

1 Introduction
Mix-up, a data augmentation strategy to increase a deep neu-
ral network (DNN)’s predictive performance, has drawn a lot
of attention in recent years, along with the numerous initia-
tives made to pushing various deep learning models to move
up the state-of-the-art leaderboard on multiple benchmarks
and different applications. The pioneering idea, Input Mix-
up, introduced by (Zhang et al. 2018), simply interpolates
two samples in a linear manner and has been proven to play
a significant role in improving a model’s predictive perfor-
mance with hardly any additional computing cost. Recently,
theoretical explanations for how Input Mix-up enhances ro-
bustness and generalization have been studied (Zhang et al.
2021b).

Building upon the empirical success of these mix-up
methods, the community has explored multiple directions to
further improve the mix-up idea. Manifold Mixup (Verma
et al. 2019) extends the original mix-up by mixing at a ran-
dom layer in the model. AugMix (Hendrycks et al. 2020)
first augments the images by different combinations of aug-

Figure 1: Illustration of our proposed method R-Mix. Arbi-
trary Mix-up linearly interpolates images or employs cut-
and-paste strategy. Saliency-guided Mix-up preserves the
rich supervisory signals of the images. Our method R-Mix
works by combining finest aspects of both approaches and
demonstrates its effectiveness on a variety of tasks.

mentation techniques, then finally mixes them together to
increase the robustness of DNNs. CutMix (Yun et al. 2019)
uses spatial copy and paste-based strategy on other samples
to create the new mixed-up sample and has also been used
widely in various applications.

Among the rich family of mix-up extensions, a popular
branch in it is mix-up methods that leverage the informa-
tion of saliency maps, because intuitively, one way to im-
prove the efficiency of mix-up would be to replace its ran-
dom procedure with a directed procedure guided by some
additional knowledge, and a saliency map appears to be a
natural choice of such knowledge.

Probably driven by the same intuition, the community has
investigated the saliency-based mix-up idea deeply in re-
cent years, such as SaliencyMix (Uddin et al. 2021), Puz-
zleMix (Kim, Choo, and Song 2020), and Co-Mixup (Kim
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et al. 2021). SaliencyMix generates the saliency map, and
then employs the cut-and-paste strategy of CutMix. Puz-
zleMix further introduces secondary optimization objectives
that first optimize the saliency map, then optimize the trans-
port plan in order to preserve the rich supervisory signals
of the image. Co-Mixup extends PuzzleMix’s idea by fur-
ther introducing objectives to find the most suitable image
to mix in the whole batch.

We observe that each ”direction” of image combining has
its own advantages and disadvantages. Arbitrary Mix-up
techniques, such as Input Mix-up and CutMix, offer fast
training speed and simplicity while maintaining competi-
tive performance. Contrarily, Saliency-guided Mix-up, like
PuzzleMix and Co-Mixup, compromises speed and simplic-
ity in favor of accuracy, expected calibration error, and ro-
bustness to adversarial attack. Over time, significant efforts
have been proposed to further improve the saliency-guided
direction with minimal focus on the other (Uddin et al. 2021;
Kim, Choo, and Song 2020; Kim et al. 2021; Venkatara-
manan et al. 2022), resulting in an unexplored randomness
domain. We raise the question: is it feasible to have a method
that is expeditious, simple, and effective at the same time?

In this paper, we identify a straightforward learning
heuristic that sits in the middle of two paths. Our through-
out examination of saliency-guided methodologies suggests
that they typically fall under a three-step optimization: First,
calculate the saliency of the image. Then, mix the images in
accordance with a secondary optimization objective. Finally,
train the DNN with the mixed images and labels. Roughly
speaking, all three levels require the same amount of training
time, making the training takes at least three times longer.
We notice that, by swapping out the second step with a
randomness-driven mixing approach, we are able to design
a strategy that gives competitive performance with state-of-
the-art methods while maintaining the speed and ease of im-
plementation of arbitrary mix-up. We name our method R-
Mix and empirically validate its performance on four dif-
ferent tasks: image classification, weakly supervised object
localization, expected calibration error, and robustness to ad-
versarial attack. On all benchmarks, R-Mix shows an im-
provement or on-par performance with state-of-the-art meth-
ods.

In summary, our contributions in this paper are as follows:

• We begin by demonstrating that our implementation of
arbitrary mix-up is capable of outperforming saliency-
guided mix-up, indicating that existing attempts have not
yet fully investigated the effectiveness of randomization.
(Section: Background and Motivation).

• Motivated from the superiority of each mix-up direction
over one another, we propose a novel method R-Mix
that combines the two mix-up routes and eliminates a
third of the computational complexity (Section: R-Mix).
With regard to four benchmarks on different model ar-
chitectures: image classification, weakly supervised ob-
ject localization, robustness to adversarial attack, and ex-
pected calibration error (Section: Experiments), we high-
light that R-Mix performs better or equally well as state-
of-the-art approaches.

• Finally, to answer the question whether coupled random-
ness and saliency are sufficient to the gain of R-Mix or
there exists a superior decision protocol, we present sev-
eral experiments in the case of Reinforcement Learning
controlled mix-up scenario. Our Reinforcement Learning
agent adapts and chooses the mix-up rules based on the
performance of the classifiers, aiming to reduces reliance
on human-designed objectives and hyperparameter tun-
ing of mix-up in general. We validate its effectiveness on
CIFAR-100 image classification task, and find that it per-
forms competitively with other baselines. (Section: Ab-
lation Studies).

2 Background and Motivation
In this Section, we provide background knowledge about
mix-up training, and empirical results serving as motivation
for our method.

2.1 Mix-up Background
Let C,W,H,N denote the number of channels, image
width, image height, and number of classes, respectively.
We assume that W = H for simplicity, and will use only W
from now on. Let x ∈ X , x ∈ RC×W×W be the input im-
age and y ∈ Y, y ∈ {0, 1}N be the output label. Let f(·; θc)
denote a classifier specified by parameter θc. Let D be the
distribution over X×Y . In mix-up based data augmentation,
the goal is to optimize the model’s loss ℓ : X ×Y ×Θ → R
given the mix-up function for the inputs h(·), for the labels
g(·), and the mixing distribution, usually Beta(α, α) with
the scalar parameter α, as follows:

minimize
θ

E
(x0,y0),(x1,y1)∈D

E
λ∼Beta

ℓ(h(x0, x1), g(y0, y1); θc))

(1)
Mix-up typically requires two tuples of images-labels. In-

put Mix-up (Zhang et al. 2018) defines h(x0, x1) = λx0 +
(1 − λ)x1 and g(x0, x1) = λy0 + (1 − λ)y1. Manifold
Mixup (Verma et al. 2019) extends Input Mix-up by mix-
ing the inputs at a hidden representation F as: h(x0, x1) =
λF (x0)+(1−λ)F (x1), that is, at a random layer of f(·; θc).
CutMix randomly copies a rectangular region from x0 and
pastes it to x1. PuzzleMix (Kim, Choo, and Song 2020)
uses h(x0, x1) = z ⊙ΠTx0 + (1− z)⊙Π′Tx1 where Π is
a transport plan, z is a binary mask and ⊙ is element-wise
multiplication. Co-Mixup (Kim et al. 2021) extends h(·) to
operate on a batch of data instead of two pairs: h(xB).

While some early techniques simply mix the images using
weights sampled from the Beta distribution (Input Mix-up,
Manifold Mixup), or choose an arbitrary rectangular region
and then apply mix-up (CutMix), both PuzzleMix and Co-
Mixup require additional optimization objectives to ensure
rich supervisory signals, introducing heavy computational
cost.

2.2 Motivation
In this Section, we provide empirical evidence demonstrat-
ing the usefulness of randomization on generalization abil-
ity. CutMix (Yun et al. 2019), which randomly cuts a rect-
angular patch from one image and pastes it into another, is



Scheduler MultiStepLR OneCycleLR
CutMix (300) 78.71 80.60†

PuzzleMix (300) 79.38 79.75
Co-Mixup (300) 80.13 79.79
PuzzleMix (1200) 80.36 80.48
Co-Mixup (1200) 80.47 80.30

Table 1: Top-1 Accuracy on CIFAR-100 using PARN-18
with diffferent learning rate schedulers and training epochs.
Bold indicates the best result. † denotes the CutMix+ version
we will use throughout this paper.

typically justified on the grounds that it can create abnor-
mal images by unintentionally choosing the fragments that
do not contain any information about the source object (for
example, cutting the grass-only region in an image of a cow
on grass), which results in the so-called ”learning false fea-
ture representations”. Recent saliency-based methods aim
to solve the issue by enhancing the saliency of the com-
bined pictures, and report an increase in performance (Ud-
din et al. 2021; Kim, Choo, and Song 2020; Venkataramanan
et al. 2022; Kim et al. 2021). Naturally, one may think that
saliency is the main contributing factor to this increment.
However, we provide several counter-examples suggesting
that this notion is only partially persuasive, as randomness
is still essential for generalization.

• OneCycleLR elevates arbitrary-mixup to cutting-
edge tier. We simply change another LR scheduler in-
stead of using the default MultiStepLR, specifically the
OneCycleLR scheduler (Smith and Topin 2018) and
reproduce CutMix. We denote this method as Cut-
Mix+. We train PreActResNet-18 (PARN-18) (He et al.
2016b) on CIFAR-100 for 300 epochs. From Table 1
(first row), CutMix+ performs better than the most ad-
vanced saliency-guided mix-up by increasing accuracy
by 1.89%. Swapping another LR scheduler takes a few
lines of code and introduces no additional computational
cost.

• OneCycleLR does not help saliency-guided mix-up.
We evaluate the performance of the OneCycleLR sched-
uler by using hyperparameters from the prior CutMix+
experiment and reproduce these two saliency-guided
methods again for 300 epochs. Table 1 (right column)
demonstrates that OneCycleLR improves PuzzleMix by
0.37% accuracy, but not Co-Mixup.

• Training saliency-guided mix-up for four times as
many epochs still underperform CutMix+. We run
PuzzleMix and Co-Mixup for 1200 epochs using both
schedulers and compare the results. Table 1 (last two
rows) further shows that despite the improvement, both
methods still fall short of CutMix+.

• The finding is in line with other model architec-
tures. Finally, we further solidify the findings by running
CutMix+ on three more model architectures: WideRes-
Net (WRN) 16-8 (Zagoruyko and Komodakis 2017),
ResNeXt29-4-24 (Xie et al. 2016) for 300 epochs, and
WRN 28-10 for 400 epochs following the original im-

Method CutMix PuzzleMix Co-Mixup CutMix+
PARN18 78.71 79.38 80.13 80.60
WRN16-8 79.86 80.76 80.85 81.79
WRN28-10 82.50 84.05 - 83.97
RNX 78.14 78.88 80.22 82.30

Table 2: Top-1 Accuracy (%) on CIFAR-100 with various
model architectures. Higher is better. Bold indicates the best
result.

plementations. Table 2 shows that CutMix+ consistently
bests other state-of-the-art methods up to 2.08% accu-
racy.

These empirical results hint that although CutMix, and
arbitrary mix-up in general, may produce distorted visuals,
they are not as problematic in practice as they would appear.
We then build a method with the following objectives as our
driving force:

1. Experimenting with OneCycleLR scheduler: CutMix
simply requires a different LR scheduler to perform bet-
ter. While MultiStepLR clearly helps PuzzleMix and Co-
Mixup, OneCycleLR helps CutMix and provides little or
no performance benefit for the other two. In this work,
OneCycleLR serves as the primary engine for our exper-
iments.

2. Un-natural images help in generalization: Complex
mix-up techniques only produce marginal performance
benefits when training for extended period of time, and
CutMix still remains a competitive method. Despite
the fact that maximizing the saliency generates better-
looking images for human eyes (Kim, Choo, and Song
2020; Kim et al. 2021), CutMix+’s performance suggests
that it may not be the optimal way to mix images. Instead,
striking a balance between the most and least salient re-
gions by combining randomness and saliency may yield
a more promising outcome.

3. Low computational overhead: Recent saliency-based
mix-up algorithms have an excessively high computa-
tional cost. For instance, if all factors are held con-
stant, Co-Mixup takes 15 hours and PuzzleMix takes 27
hours, meanwhile Vanilla, CutMix (and CutMix+ varia-
tion) training takes approximately about 2.5 hours. Hav-
ing an alternate mix-up method that compromises be-
tween simplicity, performance, and computing cost will
tremendously benefit low-resource academic labs, busi-
nesses, and competitors in the data science field, where
limited hardware is provided.

3 R-Mix: An Expeditious Saliency-based
Mixup

In our proposed R-Mix, we extend Input Mix-up and Cut-
Mix to the patch level but also utilize saliency information.
We break down our method in four main steps.

(1) Generating the Saliency Map: First, we compute the
saliency map ϕ(x) as the gradient values of training loss
with respect to the input data and measure the ℓ2 norm



Figure 2: Illustration of R-Mix mix-up process. Given two
images (x0, x1) and their saliency maps, for two patches at
the same position, if they both belong to the top (yellow) and
least (purple) salient regions, we mix the patch (blue), else
we only select the top salient one. Best viewed in color

across the input channels (Simonyan, Vedaldi, and Zisser-
man 2014):

ϕ(x) =

√√√√ C∑
i=0

1

C
(∇i

θc
ℓ(x, y; θc))2 (2)

where ∇i
θc
ℓ(x, y; θc) denotes the gradient at channel i.

Second, we normalize ϕ(x) so that all elements of the
map sum up to 1, and down-sample it to size p × p, where
p is arbitrary chosen as a multiple of 2. Intuitively, normal-
izing and down-sampling ensure numerical stability and de-
crease compute cost for the subsequent operations. More-
over, choosing a random p for each batch enhances sample
diversity. Specifically:

ϕ′(x) = AvgPool
(

ϕ(x)∑
ϕ(x)

, kernel size = p, stride = p

)
(3)

(2) Splitting the Saliency Map into two regions: Next,
we randomly partition ϕ′(x) into two regions: the most and
least salient regions, using the percentile value. For the top-k
space A with K equally spaced values from 0.0 to 0.99, we
sample a value q ∈ A, q ∈ [0, 0.99]. We compute the q-th
percentile value of the down-sampled saliency map ϕ′(x),
denoted as qperc and construct a binary mask m as follows.
For the i-th element in ϕ′(x):

m(i) =

{
1, if ϕ′

i(x) ≥ qperc (top salient region)
0, otherwise (least salient region)

(4)

After construction, mask m is up-sampled by replicating
elements to match the size of the inputs x. After this step,
we obtain the mask of top-least salient regions of the inputs.

(3) Creating the soft mix-up filter: For a pair of (x0, x1),
we obtain (m0, x0) and (m1, x1). We construct another
mask minter (inter stands for intersection) as follows. For the
i-th element in m:

minter(i) =

{
1, if m0(i) = m1(i)

0, otherwise
(5)

Mix-up Cutout CutMix Co-Mixup R-Mix
Speed 1/1 1/1 1/1 3/1 2/1
Top Salient ? ? Mixed Yes Yes
Least Salient ? ? Mixed No Yes
Full Image Yes No Yes Yes Yes
Dropout No Yes Yes Yes Yes
Mixed (x, y) Yes No Yes Yes Yes
2nd objective No No No Yes No

Table 3: Major distinctions between R-Mix and other tech-
niques. Training speed is measured on the same GPU.

The value of the element is 1 if the two corresponding
patches both belong to the top and least salient regions, and
0 otherwise (Figure 2).

(4) Mixing the images and labels: Finally, we sample the
mixing coefficient λ ∼ Beta(α, α), then our mix-up func-
tion is defined as:

h(x0, x1) = minter ⊙ (λx0 + (1− λ)x1)

+ ¬minter ⊙ (m0 ⊙ x0 +m1 ⊙ x1)
(6)

where ¬ denotes the logical NOT operator, that is, the bi-
nary mask is flipped. In short, for the i-th element in m0 and
m1, we mix the element if m0(i) = m1(i) (analogous to
Input Mix-up). For the elements that m0(i) ̸= m1(i), we
use minter(i) = max(m0(i),m1(i)) (analogous to CutMix).
Note that m is a binary mask.

Let c(m) denote the number of elements that are active,
that is, c(m) = |{i|m(i) = 1}| where | · | denotes the cardi-
nality of a set. The label mix-up function is defined as:

g(y0, y1) =
c(minter)

W ×W
(λy0 + (1− λ)y1)

+
c(¬minter ⊙m0)y0 + c(¬minter ⊙m1)y1

W ×W

(7)

This label mix-up function takes into account both the
mix-up λ, and how many patches of the image are mixed.

In practice, all operations can operate on a batch level,
with the current batch being randomly permuted to obtain
the other input. The mixed sample produced by Equation 6
and 7 is used to train the classifier f(·; θc) to minimize the
soft target labels by minimizing the multi-label binary cross-
entropy loss in Equation 1.

We list the major distinctions between R-Mix and alterna-
tive techniques in Table 3. In summary, our method R-Mix
has fast training speed, utilizes the entire image, but has no
additional optimization objective. Figure 2 further illustrates
the mix-up process of two images on the patch level.

4 Experiments
In this Section, we describe the datasets, models and training
pipelines to benchmark our method on for different tasks:
Image Classification, Weakly Supervised Object Localiza-
tion, Expected Calibration Error, and Robustness to Adver-
sarial Attack.



Method Vanilla Input Manifold CutMix PuzzleMix Co-Mixup CutMix+ R-Mix
PARN-18 76.41 77.57 78.36 78.71 79.38 80.13 80.60 81.49
WRN16-8 78.30 79.92 79.45 79.86 80.76 80.85 81.79 82.32
WRN28-10 78.86 81.73 82.60 82.50 84.05 - 83.97 85.00
RNX 78.21 78.30 77.72 78.14 78.88 80.22 82.30 83.02

Table 4: Top-1 Accuracy (%) on CIFAR-100 with various models and methods trained for 300 epochs. Higher is better. Bold
indicates the best result.

Datasets. We test our methods on two standard classifi-
cation dataset benchmarks. CIFAR-100 (Krizhevsky 2009)
contains 50k images of size 32×32 for training and 10k im-
ages for validation, equally distributed among 100 classes.
ImageNet (Russakovsky et al. 2015) has 1.3M images for
training distributed among 1k classes and has 100k images
for validation. We normalize the data channel-wise, and av-
erage the results over 10 runs on CIFAR-100, 5 runs on Im-
ageNet. Similar to earlier works, traditional augmentations,
such as Random Horizontal Flip and Random Crop with
Padding, are employed.

Model Architecture. To remain consistent with earlier
works, we use five different model architectures to test our
method. We use PreActResNet-18 (PARN18) (He et al.
2016b), Wide Res-Net (WRN) 16-8 and 28-10 (Zagoruyko
and Komodakis 2017), and ResNeXt 29-4-24 (RNX) (Xie
et al. 2016) on CIFAR-100. For ImageNet we use ResNet-
50 (He et al. 2016a).

Pipeline and Hyperparameters. For CIFAR-100, we set
p ∈ {2, 4},K = 10, α = 1.0 and use OneCycleLR sched-
uler with initial LR 3e− 3, max LR 0.3 and final LR 3e− 5,
increasing for 30% of the total number of epochs. We train
for a total of 300 epochs with batch size 100. For ImageNet
we use the identical protocol (such as image size and LR
scheduler) described in PuzzleMix and Co-Mixup, which
trains ResNet-50 for 100 epochs. We set p ∈ {2, 4},K =
10, α = 0.2.

4.1 Image Classification
For fair comparison, we include results that were reported
using the same training pipeline, that are: Input Mix-up
(Zhang et al. 2018), Manifold Mixup (Verma et al. 2019),
CutMix (Yun et al. 2019), PuzzleMix (Kim, Choo, and Song
2020), Co-Mixup (Kim et al. 2021), but add other methods
with different pipelines for comparison in the Appendix. All
methods are trained using PARN-18, WRN16-8, and RNX
on CIFAR-100 for 300 epochs, except WRN28-10 is trained
for 400 epochs.

From Table 4, R-Mix outperforms CutMix by 2% and
CutMix+ by 1% on average. It outperforms Co-Mixup by
1.47% with WRN16-8, by 0.85% with WRN28-10 and by
2.8% with RNX. As noted in other works (Zhang et al.
2018), mix-up methods generally benefit more from models
with higher capacity, explaining the higher gain on bigger
models.

We further test R-Mix on ImageNet (ILSVRC 2012)
dataset (Russakovsky et al. 2015). We use the same train-
ing protocol as specified in Co-Mixup which trains ResNet-

Metric Accuracy Localization Speed
Vanilla 75.97 54.36 1/1
Input 77.03 55.07 1/1
Manifold 76.70 54.86 1/1
CutMix 77.08 54.91 1/1
PuzzleMix 77.51 55.22 2.8/1
Co-Mixup 77.61 55.32 3/1
R-Mix 77.39 55.58 2/1

Table 5: Top-1 Accuracy, Localization Accuracy (%), and
Training speed increment on ImageNet using ResNet-50
trained for 100 epochs. Higher is better. Bold indicates the
best result.

50 for 100 epochs. Table 5 shows that R-Mix shows an im-
provement over Vanilla by 1.42% and CutMix by 0.31%.

4.2 Weakly Supervised Object Localization
Weakly Supervised Object Localization (WSOL) aims to lo-
calize an object of interest using only class labels without
bounding boxes at training time. WSOL operates by extract-
ing visually discriminative cues to guide the classifier to fo-
cus on prominent areas of the image.

We compare WSOL performance of classifiers trained on
ImageNet to demonstrate that, despite the fact that R-Mix
produces un-natural images, it is more effective in focusing
on salient regions compared to other saliency-guided meth-
ods. From Table 5, using the Class Activation Map method
(Zhou et al. 2015) and the protocol described in Co-Mixup,
it is interesting that, even with a lower Top-1 Accuracy, our
method increases the Localization Accuracy by 0.26% and
outperforms all other baselines. This further suggests that by
striking a balance between the most and least salient regions,
R-Mix better guides the classifier to focus on salient regions.

Metric ECE FGSM
Vanilla 10.25 87.12
Input 18.50 81.30
Manifold 7.60 80.29
CutMix 18.41 86.96
PuzzleMix 8.22 78.70
Co-Mixup 5.83 77.61
R-Mix 3.73 77.08

Table 6: Expected Calibration Error (ECE) (%) and Top-1
Error Rate (%) of PARN-18 to FGSM attack. Lower is bet-
ter.



4.3 Expected Calibration Error
We evaluate the expected calibration error (ECE) (Guo et al.
2017) of PARN-18 trained on CIFAR-100. ECE is calcu-
lated by the weighted average of the absolute difference be-
tween the confidence and accuracy of a classifier. From Ta-
ble 6, we show that while Arbitrary Mix-up methods tend
to have under-confident predictions, resulting in higher ECE
value, Saliency-guided Mix-up methods tend to have best-
calibrated predictions. Our method R-Mix successfully al-
leviates the over-confidence issue and does not suffer from
under-confidence predictions.

4.4 Robustness to Adversarial Attack
Adversarial Attack attempts to trick DNNs into classifying
an object incorrectly by applying small perturbations to the
input images, resulting in an indistinguishable image for the
human eye. (Szegedy et al. 2013). Following previous eval-
uation protocol (Kim, Choo, and Song 2020), we evaluate
PARN-18 model’s robustness to FGSM adversarial attack
with 8/255 ℓ∞ ϵ-ball. As shown in Table 6, we observe that
Saliency-guided methods have lower FGSM error. By lever-
aging this Saliency information, R-Mix further establishes
the best result among other competitors by lowering the Er-
ror Rate by 0.53%.

4.5 Computational Analysis
We compare the wall time on CIFAR-100 and ImageNet by
investigating the released checkpoints and reproducing ex-
periments. Specifically, including training and validation at
each epoch, for CIFAR-100 with batch size 100, Co-Mixup
takes 15 hours on one RTX 2080Ti, whereas R-Mix takes
4.0 hours. For ImageNet with 4 RTX 2080Ti, vanilla train-
ing takes 0.4s per batch, R-Mix takes 0.77s per batch while
Co-Mixup takes 1.32s per batch. It should be noted that that
the saliency map is built on the gradient information (Si-
monyan, Vedaldi, and Zisserman 2014) which requires two
passes to the classifier. As a result, the running time is ex-
pected to be twice as long as with vanilla training. During
validation, all classifiers need the same amount of time.

5 Ablation Studies
We conduct ablation studies about hyperparameter sensitiv-
ity and experiments about a mix-up method that automati-
cally decides the mix-up policies based on the model’s per-
formance, with the goal of laying the groundwork for future
mix-up methods that require minimal human-designed ob-
jectives and low hyperparameter tuning effort.

5.1 Sensitivity to Hyperparameters.
Number of patches p and top-k space K. We conduct
hyperparameter tuning with different choices of the down-
sampling Kernel Size p and the top-k space that consists of
K equally-spaced values from 0.0 to 0.99 on CIFAR-100.
We then use the best found combination: K = 10, p ∈
{2, 4} to report the final result as in previous Tables and
Figures. We report the result in Table 7. We observe that,
the higher the value p, the less efficient the method is. We

hypothesize that, since each image patch has its own mix-
up rule depending on the ”other” patch, thus the higher the
p value, the higher the probability that a patch has different
mixing rules compared to its neighbor patches. This diver-
sity ”breaks” the connectivity of the patches, which in turn
hurts the convolution operations.

K=5 K=10 K=16 K=20
p ∈ {2, 4} 81.22 81.49 81.35 81.18
p ∈ {4, 8} 80.98 80.80 80.30 80.54
p ∈ {8, 16} 79.94 80.33 79.29 79.50
p ∈ {16, 32} 79.60 79.06 78.86 79.20
p ∈ {2, 32} 79.64 79.69 79.21 79.64
p ∈ {2, 4, 8} 80.87 80.34 80.04 80.94
p ∈ {4, 8, 16} 80.12 80.37 80.34 80.41
p ∈ {8, 16, 32} 79.53 79.12 79.55 79.67

Table 7: Top-1 Accuracy on CIFAR-100 using PARN18 with
different choices of hyperparameters. Higher is better.

Mixing parameter α. We then conduct sensitivity anal-
ysis on the mixing parameter α used in sampling weights
from the Beta distribution on CIFAR-100 with PARN-18
model. Table 8 shows that for the majority of options, R-
Mix is still ourperforming other baselines and only suffers
from minor accuracy lost, demonstrating its robustness to
hyperparameter tuning.

α = 0.2 α = 0.5 α = 1.0 α = 2.0
R-Mix 81.29 81.40 81.49 81.01

Table 8: Top-1 Accuracy of R-Mix on CIFAR-100 with dif-
ferent α values. Higher is better.

5.2 Is Randomness Enough? Reinforcement
Learning-Powered Decisions with RL-Mix.

In this section, we perform early experiments in an attempt
to answer the question “whether coupled randomness and
saliency are sufficient to the gain of R-Mix or there exists a
superior decision protocol“ using Reinforcement Learning.
Inspired by AutoAugment (Cubuk et al. 2019), we use the
Proximal Policy Optimization (Schulman et al. 2017) from
Stable-Baselines3 (Raffin et al. 2019) using default hyper-
parameters suggested by a large-scale study (Andrychowicz
et al. 2021). With the inputs as the saliency map ϕ′(x) and
the logits, the agent determines the top-k value for each im-
age in a batch. An episode of the agent ends when the clas-
sifier f(·, θc) finishes training one epoch. Since the agent
requires a fixed input size, we arbitrary choose p = 8.
Based on the findings from Deep AutoAugment (Zheng
et al. 2022), the reward function is the cosine similarity be-
tween the gradients of the original input x and the mixed
input x′, that is, CosSim(ϕ(x), ϕ(x′)). We call this method
RL-Mix.

Table 9 reports the result of RL-Mix and other baselines.
We can see that in most cases, R-Mix is still better than RL-
Mix. Interestingly, with a fixed size of p and no hyperpa-
rameter tuning, it is still capable of delivering good perfor-



Model CutMix CutMix+ R-Mix RL-Mix
PARN-18 78.71 80.60 81.49 80.75
WRN16-8 79.86 81.79 82.32 82.16
WRN28-10 82.50 83.97 85.00 84.90
RNX 78.14 82.30 83.02 82.43

Table 9: Top-1 Accuracy of RL-Mix on CIFAR-100 trained
for 300 epochs. Higher is better.

mance. On the same GPU used throughput the paper, RL-
Mix is slower than R-Mix by 2.0 times with a runtime of
7.5-8 hours.

Although RL-Mix is only early work, we believe it has
the potential to open a new research direction of fully au-
tomatic mix-up, a branch in AutoML that requires minimal
human-designed objectives and has low hyperparameter tun-
ing effort.

6 Related Work
6.1 Saliency Maps
There have been many works towards interpretability tech-
niques for trained neural networks in recent years. Saliecny
maps (Simonyan, Vedaldi, and Zisserman 2014) and Class
Activation Maps (Zhou et al. 2015) have focused on expla-
nations where decisions about single images are inspected.
The work of (Simonyan, Vedaldi, and Zisserman 2014) gen-
erates the saliency map directly from the DNN without any
additional training of the network by using the gradient in-
formation with respect to the label. Following it, (Zhao et al.
2015) measures the saliency of the data using another neural
network, and (Zhou et al. 2016) aims to reduce the saliency
map computational cost. We follow the method from (Si-
monyan, Vedaldi, and Zisserman 2014), which generates a
saliency map without any modification to the model.

6.2 Data Augmentation
Data Augmentation is a technique to increase the amount
of training data without additional data collection and an-
notation costs. There are two types of data augmenta-
tion techniques popularly used in various vision tasks: (1)
transformation-based augmentation on a single image, and
(2) mixture-based augmentation across different images.

Transformations on a single image. Geometric-based
augmentation and photometric-based augmentation have
been widely used in computer vision tasks. Survey papers
(Halevy, Norvig, and Pereira 2009; Sun et al. 2017; Shorten
and Khoshgoftaar 2019) show that inexpensive data aug-
mentation techniques such as applying random flip, ran-
dom crop, random rotation, etc., increase the diversity of the
data and the robustness of the DNNs, and have been widely
adopted in popular deep learning frameworks.

Mixture across images. (i) Mixture of images with a
pre-defined distribution. Input Mix-up (Zhang et al. 2018)
is a simple augmentation technique that blends two im-
ages by linearly interpolating them, and the labels are re-
weighted by the blending coefficient sampled from a distri-
bution. Manifold Mixup (Verma et al. 2019) extends Input

Mix-up to the perturbations of embeddings. CutMix (Yun
et al. 2019) randomly copies a rectangular-shaped region of
an image, and pastes it to a region of another image; (ii)
Mixture through Saliency Maps. Saliency-based mixtures,
such as PuzzleMix (Kim, Choo, and Song 2020), Co-Mixup
(Kim et al. 2021), and SaliencyMix (Uddin et al. 2021) first
generate a saliency map, and then use the map to optimize
secondary objective functions that maximize the saliency to
mix the images and ensure reliable supervisory signals.

For a more comprehensive summary of recent mix-up
methods (Guo, Mao, and Zhang 2019; Harris et al. 2020;
Faramarzi et al. 2020; Qin et al. 2020; Hendrycks et al.
2021; Zhou et al. 2021; Li et al. 2021; Dabouei et al. 2021a;
Venkataramanan et al. 2022; Liu et al. 2022b; Dabouei et al.
2021b; Park et al. 2022; Liu et al. 2022a), we refer readers
to the survey paper (Naveed 2021).

6.3 Deep Neural Networks Training Techniques
Techniques such as Weight Decay (Goodfellow, Bengio, and
Courville 2016), Dropout (Srivastava et al. 2014), Batch
Normalization (Ioffe and Szegedy 2015), and Learning Rate
schedulers are widely used to efficiently train deep net-
works. The literature of learning rate (LR) scheduler is now
nearly as extensive as that of optimizers (Schmidt, Schnei-
der, and Hennig 2021). Generally, the training is divided into
multiple phases. The LR of the classifier is kept constant
during a phase, and then is decayed by a positive value in
the next phase. One of the most common scheduler is Mul-
tiStepLR (Goodfellow, Bengio, and Courville 2016; Zhang
et al. 2021a) or step-wise decay, which divides the train-
ing into phases where each consists of tens or hundreds of
epochs. OneCycleLR, introduced in (Smith and Topin 2018)
employs the cyclic learning rate scheduler (Smith 2017) but
only for one cycle. The LR starts with a small value, in-
creases to the max value then gradually decreases to an even
smaller value until training finishes.

In this paper, we show that the LR scheduler can have a
large impact on the performance of existing mix-up meth-
ods, sometimes removing any performance gains of more
sophisticated mix-up strategies compared to vanilla mix-up
strategies.

7 Conclusion
In this paper, we show that randomization is capable of per-
forming at the cutting-edge tier, suggesting an unexplored
domain in recent advances of mix-up research. Driven by
the effectiveness of a mix-up research path over one another,
we propose R-Mix, a simple training heuristic that lies at the
junction of the two routes. Extensive experiments on image
classification, weakly supervised object localization, cali-
bration, and robustness to adversarial attack show a consis-
tent improvement or on-par performance with state-of-the-
art methods, while offering speed and simplicity of Arbitrary
Mix-up. Finally, we describe RL-Mix, an early experiment
of a Reinforcement Learning - powered agent to automati-
cally decides the mixing regions based on the performance
of the classifier, which has shown a competitive capability
on CIFAR-100, laying the foundation of low-effort hyperpa-
rameter tuning mix-up.



Acknowledgement
This work was supported in part by the Institute of Informa-
tion & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.
2022- 0-00871, Development of AI Autonomy and Knowl-
edge Enhancement for AI Agent Collaboration).

References
Andrychowicz, M.; Raichuk, A.; Stańczyk, P.; Orsini, M.;
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