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Abstract

Learning with noisy labels is a vital topic for practical deep
learning as models should be robust to noisy open-world
datasets in the wild. The state-of-the-art noisy label learn-
ing approach JoCoR fails when faced with a large ratio of
noisy labels. Moreover, selecting small-loss samples can also
cause error accumulation as once the noisy samples are mis-
takenly selected as small-loss samples, they are more likely
to be selected again. In this paper, we try to deal with er-
ror accumulation in noisy label learning from both model
and data perspectives. We introduce mean point ensemble
to utilize a more robust loss function and more information
from unselected samples to reduce error accumulation from
the model perspective. Furthermore, as the flip images have
the same semantic meaning as the original images, we select
small-loss samples according to the loss values of flip im-
ages instead of the original ones to reduce error accumulation
from the data perspective. Extensive experiments on CIFAR-
10, CIFAR-100, and large-scale ClothinglM show that our
method outperforms state-of-the-art noisy label learning meth-
ods with different levels of label noise. Our method can also be
seamlessly combined with other noisy label learning methods
to further improve their performance and generalize well to
other tasks. The code is available in https://github.com/zyh-
uaiaaaa/MDA-noisy-label-learning.

Introduction

The performance improvement of Deep Neural Networks
(DNN5s) depends largely on the large-scale training datasets.
However, collecting large-scale datasets with fully precise
annotations is usually expensive and time-consuming. There
are lots of label noise in the open-world datasets, which de-
grades the performance of deep learning models in practical
applications. At the same time, it is widely known that deep
neural networks can easily memorize large-scale data with
even completely random labels, making unreliable predic-
tions when generalizing to other tasks (Zhang et al. 2017;
Arpit et al. 2017; Jiang et al. 2018). Thus, learning with noisy
labels has drawn lots of attention in recent years (Patrini et al.
2017; Han et al. 2018a; Zhang and Sabuncu 2018; Wang et al.
2019; Junnan et al. 2019; Ren et al. 2018; Li, Socher, and Hoi
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2020; Jiang et al. 2018; Malach and Shalev-Shwartz 2017;
Han et al. 2018b; Yu et al. 2019a; Wei et al. 2020).

Some previous works try to seek theoretically guaranteed
methods to solve the noisy label learning problem (Patrini
etal. 2017; Han et al. 2018a; Zhang and Sabuncu 2018; Wang
et al. 2019). However, they are usually not suitable for real-
world label noise as the transition probability between the
noisy label and ground truth in real-world datasets is hard to
estimate. Others follow the small-loss selection path (Jiang
et al. 2018; Malach and Shalev-Shwartz 2017; Han et al.
2018b; Yu et al. 2019a; Wei et al. 2020). They treat the small-
loss samples as clean samples and only use them for training,
while there exists the debate that whether the model should
utilize “agreement” or “disagreement”. (Malach and Shalev-
Shwartz 2017; Yu et al. 2019a) claim that only using the
samples that two models have different predictions as train-
ing samples can keep the models distinct and avoid fitting
noisy labels. However, (Wei et al. 2020) argues that dis-
agreement is not necessary and proposes a training paradigm
that pushes two models together. We observe that (Wei et al.
2020) achieves excellent performance when learning with
a small ratio of noisy labels while it fails with a large ratio
of noisy labels. We argue that this might be because the per-
formance of the two models are both low faced with a large
ratio of noisy labels, which leads to error accumulation from
the model perspective. In the meantime, selecting small-loss
samples as clean samples for training leads to error accumu-
lation from the data perspective. Some noisy samples might
get small loss values during training and thus be selected
for training. After updating the gradients, the selected noisy
samples might be remembered by the models and are more
likely to be selected again in the following training epochs,
which degrades the model performance.

Motivated by the above two problems, in this paper, we
propose to deal with the error accumulation in noisy label
learning from both model and data perspectives. For the
model perspective, we introduce mean point ensemble to
utilize a more robust loss function and guide the model to
acquire more information from the unselected samples. From
the data perspective, we find that the model fits noisy samples
through memorization, while it cannot remember the flipped
noisy samples to the noisy labels though they are with the
same semantic meaning. Thus, we propose to utilize the
flipped images to better detect noisy labels for the first time to



reduce error accumulation from the data perspective. Though
flip is a common augmentation method, using the loss values
of flipped images to detect noisy labels is rarely explored. We
also show that using flip to detect noisy samples can bring
more benefits than simply using flip as a basic augmentation
under label noise.

We evaluate our proposed method Model and Data Agree-
ment (MDA) on image classification datasets CIFAR-10,
CIFAR-100, and large-scale Clothing1 M. Extensive experi-
ments validate the effectiveness of each of the two proposed
modules. MDA is also compatible with other state-of-the-art
noisy label learning methods to further improve their perfor-
mance and can generalize well to other noisy label learning
tasks.

The main contributions of our work are as follows:

1. We introduce mean point ensemble to utilize a more robust
loss function and guide the two models to use information
from the unselected samples. We find that the flipped
samples can help the model to better detect noisy samples.
We also validate that using flip to detect noisy labels
achieves better results than simply using flip as a data
augmentation method under the task of learning with label
noise.

2. Extensive experiments show that the proposed method
advances state-of-the-art noisy label learning methods on
noisy label CIFAR-10, CIFAR-100 and large-scale noisy
dataset Clothing 1 M.

3. The proposed method can be easily combined with other
noisy label learning methods to further improve their per-
formance and generalize well to other noisy label learning
tasks.

Related Work
Noisy Label Learning

How to achieve good performance learning with noisy labels
has drawn lots of attention in recent years (Patrini et al. 2017;
Han et al. 2018a; Zhang and Sabuncu 2018; Thulasidasan
etal. 2019; Xu et al. 2019; Jiang et al. 2018; Ren et al. 2018;
Arazo et al. 2019; Han et al. 2018b; Malach and Shalev-
Shwartz 2017; Wei et al. 2020; Xie and Huang 2021; Yi and
Wu 2019; Kim et al. 2019; Huang et al. 2019; Han, Luo,
and Wang 2019; Li, Socher, and Hoi 2020; Ye and Yuen
2020; Nguyen et al. 2019; Li, Xiong, and Hoi 2021). The
noisy label learning methods in recent years can be mainly
categorized into two types.

Theory Guaranteed Noisy Label Learning Methods The
first type of noisy label learning method estimates the noise
transition matrix to model the label transition probability or
propose generalized cross-entropy loss. Patrini ef al. (Patrini
et al. 2017) propose loss correction methods that estimate
the label noise transition matrix through training with noisy
datasets. Hendrycks et al. (Hendrycks et al. 2018) estimate
the noise transition matrix by using a small set of trusted
data. Han et al. (Han et al. 2018a) incorporate human cog-
nition of invalid class transitions to help estimate the noise
transition matrix. Zhang et al. (Zhang and Sabuncu 2018)
propose noise-robust loss functions that can be seen as a

generalization of mean absolute error (MAE) loss and cross
entropy (CCE) loss, which can utilize both the merits of MAE
loss and CCE loss. Xu et al. (Xu et al. 2019) design a novel
loss function based on the mutual information theory, which
is provably robust to instance-independent label noise. The
common merit of these methods is that they are theoretically
guaranteed. However, they might be unsuitable for real-world
datasets with noisy labels as they usually do not conform to
the theoretical assumptions of these methods.

Sample Selection Label Learning Methods The other type
of noisy label learning approach is based on the observation
that DNNs learn simple patterns before memorizing the noisy
labels (Arpit et al. 2017). They treat the small-loss samples as
clean samples to train the DNNs and filter out large-loss sam-
ples as they are likely to be noisy samples. Jiang et al. (Jiang
et al. 2018) train a mentor net to imitate a human teacher.
The mentor net selects clean samples to teach the student net-
work to avoid remembering noisy samples. Han et al. (Han
et al. 2018b) train two differently initialized models to teach
each other as the two different models can mitigate different
types of errors caused by noisy labels. Malach et al. (Malach
and Shalev-Shwartz 2017) update the parameters only on
the instances that the two models have different predictions
to maintain divergence. Yu et al. (Yu et al. 2019b) combine
co-teaching (Han et al. 2018b) with decoupling (Malach and
Shalev-Shwartz 2017) to further improve the performance of
co-teaching as updating only using the samples with different
predictions can keep the two models distinct. Wei ef al. (Wei
et al. 2020) argue that keeping two models distinct is not
necessary and they propose a method named JoCoR to push
two models closer during training and use their agreement
degree to select small-loss samples. Though the agreement
of two models can help to detect noisy samples, we argue
that JoCoR fails when facing lots of noisy labels. We propose
mean point ensemble to utilize a more robust loss function
and further guide the two models to use more information
from the unselected images, which stable the training and
improves the model performance under a large ratio of label
noise.

Model Ensemble

Model ensemble is a very effective technique that can signifi-
cantly improve the performance of deep learning models. By
ensembling multiple models together, we can reduce the bias
and overfitting of a single model, which can make deep learn-
ing models more robust to noisy labels. Deep model ensemble
methods in supervised learning (Ganaie, Hu et al. 2021)
can be mainly categorised into bagging (Breiman 1996),
boosting (Zhang and Zhang 2008), negative correlation learn-
ing (Liu and Xin 1999), explicit/implicit ensembles (Sri-
vastava et al. 2014; Wan et al. 2013; Huang et al. 2016;
Singh, Hoiem, and Forsyth 2016), homogeneous/heteroge-
neous ensemble (Breiman 2001; Li et al. 2018), decision
fusion strategies (Ju, Bibaut, and van der Laan 2018). Several
aforementioned noisy label learning methods can be viewed
as utilizing model ensemble methods. Co-teaching (Han et al.
2018b) can be viewed as two different initialized models that
teach each other, which is a kind of ensemble. JoCoR (Wei
et al. 2020) also uses model ensemble, which is named Deep
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Figure 1: The framework of our MDA. We utilize classification loss and divergence loss to select small-loss samples on the
flipped images. We compute classification loss and mean point ensemble loss on the original images to train the two models.

Mutual Learning (Zhang et al. 2018). Deep Mutual Learning
makes several student models learn collaboratively and teach
each other throughout the whole training process. JoCoR
incorporates Deep Mutual Learning to let the two models
teach each other to achieve high performance through model
ensemble. However, when facing a large ratio of label noise,
the performance of both models is low. Thus, letting the two
models teach each other brings the drawback that the two
models might learn the errors from each other. We propose
mean point ensemble to utilize a more robust loss function
and more information from unselected samples to improve
the ensemble performance under a large ratio of noisy labels.

Proposed Method

In this section, we illustrate the implementation details of our
proposed Model and Data Agreement (MDA) method. We
propose to deal with the noisy label learning problem from
both model and data perspectives. Specifically, we introduce
mean point ensemble to utilize a more robust loss function
and more information from unselected samples. We further
utilize the flipped images which are unseen during the train-
ing process to select clean samples, which is superior to just
use flip as a data augmentation.

Model and Data Agreement

Given the dataset D = {x;,y;}; with N samples, we first
carry out flip augmentation to all the samples and get the

flipped dataset denoted as D. In the training stage, we use

D= {xi, yt}l 1 to compute the classification loss and utilize
the divergence loss to select clean samples for training, while
we only backpropagate gradients on the original dataset D.
Specifically, we also utilize the agreement maximization
principles (Sindhwani, Niyogi, and Belkin 2005; Wei et al.
2020) to detect noisy samples. We use the joint loss (1) of
classification and agreement to select clean samples.

lser(Xi) = leis(Xis i) + A x lag(Xs), (1

where [ (X;, y;) means the sum of the classification loss
of the two models of sample X; and [/,4(X;) represents the

agreement level of the two models towards the prediction
results of the sample X;. They are computed following (2) and
(5) respectively. A is the weight of the agreement (divergence)
loss when selecting the clean samples.

lcls = lCl + lCQ» (2)
where
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f' and f? are the outputs of i 1nput images {X;}, from the
two models. N and M represent the number of samples and
classes.
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When selecting clean samples according to the loss values.
Batch size is a very important factor to be considered. Select-
ing small-loss samples in the mini-batch scale is less effective
than selecting them from the whole training set. To reduce
the randomness of the sample selection process which might
cause performance degradation, we first compute the loss
values on the whole dataset D. We then select clean samples
according to the selection loss [.; values of all the training
samples. We mark the indexes of the small-loss samples and
then backpropagate gradients only on the corresponding sam-
ples from the original dataset D. The details of the sample
selection are shown in Algorithm 1.



Algorithm 1: Model and Data Agreement

Require: original training set D and the flipped counterpart D, Network f with © = {©1, ©4}, learning rate 7, noise rate 7,
warm up selection epochs T} and total epochs T, data loader iteration Ii,in;

fort=12,...,Th do B

. p=f(z,0,),Vx € D;

p, = f(%,05),VZ € D;
Calculate the selection loss £,,; for each~sample by (1);

forn=1,..., I, do
Fetch mini-batch D,, from D;

1:
2
3
4:
5:  Obtain the indexes of small-loss set on D according to the ratio R(t);
6.
7
8

Obtain /. by (2) on D,, samples with indexes fall into the small-loss set and ¢.,,; by (8) on all the samples;

9:  Obtain £,,,;, by (10);

10: Update © = © — nViirqin;

11:  end for

12:  Update R(t) = 1 — min {T%T’ T}
13: end for

Ensure: ©; and O,

Mean point ensemble

We introduce mean point ensemble to utilize a more robust
loss function and guide the two models to explore more infor-
mation from unselected samples. The mean point ensemble
regularization loss can be simplified to the following

N
lens = 5 SO( (50 = T2+ (720) — Fx0)), )

where

Flxe) = 57050 + £2(x0). ©)

The mean prediction results f(x;) can be viewed as the en-
semble of two models. Note that we use a symmetric mean
squared error loss, which is shown to be more robust to noisy
labels (Ghosh, Kumar, and Sastry 2017). The other differ-
ence between our loss and the JoCoR loss is that we calculate
lens on all training samples rather than only the selected
samples. Though the unselected samples are more likely to
have noisy labels, simply ignoring them might cause infor-
mation loss. Information loss has been previously validated
as an important factor to the model performance of quantiza-
tion methods(Qin et al. 2020b, 2022a,b, 2020a). Mean point
ensemble can better explore the information of unselected
samples to regularize the consistency of the two models and
further improve their performance.

Overall Training Loss

Having acquired the indexes of the clean samples from the
flipped images, we use them to index the clean samples from
the original training images. We then compute the joint loss
of classification on selected samples and the loss of mean
point ensemble on all samples to train the two models.

ltrm’,n = lcls + vk lenm (10)

« is the weight of the mean point ensemble loss of the two
models, which we will study in the ablation study.

Experiments

In this section, we illustrate the implementation details of
MDA. We then verify MDA on the CIFAR-10, CIFAR-
100 (Krizhevsky, Hinton et al. 2009) and Clothing 1M (Xiao
et al. 2015) with different levels of label noise. The abla-
tion studies are carried out to study the effectiveness of the
flip noise detection and mean point ensemble separately. We
further display some visualization results to provide an intu-
itive understanding of flip noise detection. We also show that
MDA is compatible with other noisy label learning methods
and can further improve their performance.

Implementation Details

To make a fair comparison with JoCoR (Wei et al. 2020),
we use a 7-layer CNN network architecture for CIFAR-10,
CIFAR-100 (Krizhevsky, Hinton et al. 2009) and ResNet-
18 (He et al. 2016) for ClothinglM (Xiao et al. 2015) as the
backbone network. We do not use any data augmentation
tricks. For CIFAR-10 and CIFAR-100, the batch size is 512.
The initial learning rate is 0.001. We use Adam (Kingma and
Ba 2014) optimizer with the weight decay as 0.0001. We
run 200 epochs in total and linearly decay the learning rate
to zero from 80 to 200 epochs. We select small-loss sam-
ples following the ratio R(t) as: R(t) = 1 — 7m'n(Tik7'7 T).
Following Co-teaching (Han et al. 2018b) and JoCoR (Wei
et al. 2020), we assume that the noise rate 7 is known. ¢
is the current training epoch and we set the T} as 10 for
CIFAR-10 and CIFAR-100 to make a fair comparison with
other methods. Following(Wei et al. 2020), we search the
divergence loss weight A in [0.05, 0.10, 0.15,. . .,0.95] with
a clean validation set, A is set to 0.65. We search the weight
of the mean point ensemble loss ~ in [0.001, 0.01, 0.1, 1,
10] with the validation set and finally set -y to 1. For exper-
iments on ClothingIM, we train the models for 15 epochs
in total. During the training stage, we set the learning rate
to 0.0008 , 0.0005 and 0.00005 for 5 epochs each. We use
Adam optimizer (momentum=0.9) and set the batch size to



Table 1: Average test accuracy (%) on CIFAR-10 over the last 10 epochs. Each experiment is run five times, shown with the

mean and standard deviation.

Noise Rate Baseline Decoupling | Co-teaching | Co-teaching+ JoCoR MDA
20% 69.18 £0.52 | 69.32+0.40 | 78.23 £0.27 | 78.71+£0.34 | 85.73+0.19 | 86.08 £0.14
50% 42.714+£0.42 | 40.22+0.30 | 71.30£0.13 | 57.05£0.54 | 79.41 £0.25 | 80.80 &+ 1.96
80% 16.24 £0.39 | 15.31 £0.43 | 26.58 +2.22 | 24.19£2.74 | 27.78 £ 3.06 | 40.76 &+ 5.41

Table 2: Average test accuracy (%) on CIFAR-100 over the last 10 epochs. Each experiment is run five times, shown with the

mean and standard deviation.

Noise Rate Baseline Decoupling | Co-teaching | Co-teaching+ JoCoR MDA
20% 35.14£0.44 | 33.10+£0.12 | 43.73 £0.16 | 49.27 +0.03 | 53.01 £0.04 | 56.44 £0.13
50% 16.97 £0.40 | 15.25£0.20 | 34.96 = 0.50 | 40.04 £0.70 | 43.49+£0.46 | 47.91 £0.31
80% 4414014 | 3.89+0.16 | 15.15+0.46 | 13.44+0.37 | 15.49+0.98 | 23.80 +1.19

64 following (Wei et al. 2020). Experiments are conducted
on 4 NVIDIA RTX 2080Ti GPUs.

Evaluation of MDA on CIFAR-10 and CIFAR-100
with Noisy Labels

We quantitatively evaluate the improvement of our proposed
MDA against other state-of-the-art methods. We train our
model on the same noisy dataset as other methods to make
fair comparisons. We report the mean test accuracy of the last
10 epochs. We follow the tradition to run each experiment
5 times and report the mean and the standard deviation of
the accuracy. We explore the robustness of MDA with three
levels of label noise including the ratio of 20%, 50%, 80%
on CIFAR-10 and CIFAR-100.

As shown in Table 1, our method outperforms all other
state-of-the-art label noise learning methods by a non-trivial
margin. For example, MDA outperforms JoCoR under 20%,
50%, 80% label noise by 0.35%, 1.39%, 12.98% respectively
on CIFAR-10. MDA outperforms JoCoR under 20%, 50%,
80% label noise by 3.43%, 6.47%, 8.31% on CIFAR-100.
MDA improves state-of-the-art methods more on large noise
ratio, which implies that our method can deal with harder
noisy datasets. We owe the large improvements on 80% label
noise to the introduction of mean point ensemble and flip
noise detection, which reduces error accumulation from both
model and data perspectives.

Evaluation of MDA on Large-Scale Noisy Data
Clothing1M

To further evaluate the effectiveness of our proposed MDA,
we carry out experiments on the large-scale real-world noisy
dataset ClothingIM. The experiment results are shown in
Table 3. MDA outperforms JoCoR by 0.94% and 1.28% on
the best test accuracy and last epoch test accuracy respec-
tively. As Clothing1M is a very large dataset containing 1
million samples, our proposed MDA can be considered as
outperforming JoCoR by a non-trivial margin. More impor-
tantly, compared with JoCoR, the best test accuracy during
the training process and the last epoch test accuracy of MDA
is more similar, which means our method can be more robust
to the label noise and less likely to overfit the noisy labels for
the last several epochs.

The Effectiveness of Flip Noise Detection

I original

clean rate

20% noise 50% noise 80% noise

Figure 2: Effectiveness of flip noise detection. We can get
cleaner train sets selecting on the flipped images.

In this section, we illustrate the effectiveness of flip noise
detection. We train a classification model for 40 epochs using
CIFAR-100 with different levels of label noise. We then
load the trained model to select small-loss samples using
the loss values of original images and flip images separately.
The experiment result is shown in Figure 2. When training
with 20% label noise, we select 80% small-loss samples
as clean samples using original images or flip images. The
result shows that 83.9% of the small-loss original samples
are without noisy labels while 90.3% of the small-loss flip
images are samples without noisy labels. This experiment
illustrates the reason why we select small-loss samples using
the flipped ones during training can improve the classification
accuracy. We also carry out experiments to compare with the
JoCoR method which simply uses flip augmentation for noisy
label training. Under 30% label noise in CIFAR-100, using
flip augmentation only gets 19.40% accuracy, while using
flip to detect noise gets 23.80%, which illustrates that simply
using flip augmentation has relatively small improvement on
training with noisy labels.

Evaluation of Different Modules

To show the influence of the flip noise detection module and
the mean point ensemble module separately, we carry out



Table 3: Best test accuracy (%) and Last epoch test accuracy (%) on Clothing]M. MDA outperforms JoCoR in both the best and

last epoch test accuracy. MDA also gets more consistent best test accuracy and last epoch test accuracy.

Accuracy | Baseline | F-correction | Decoupling | Co-teaching | JoCoR | MDA
Best 67.22 68.93 68.48 69.21 70.30 | 71.24
Last 64.68 65.36 67.32 68.51 69.79 | 71.07

Table 4: Evaluation of the different modules of MDA on CIFAR-100 with different levels of label noise. The results show that
both flip noise detection and mean point ensemble can improve the performance from the baseline, while using them together

can achieve the best performance.

flip noise detection mean point ensemble  20% 50% 80%
X X 3514% 1697% 4.41%
v X 54.84% 45.41% 23.73%
X v 5512% 47.39% 23.22%
v v 56.34% 48.57% 23.97%

an ablation study on CIFAR-100 with different levels of la-
bel noise. The results are shown in Table 4. Without the flip
noise detection and mean point ensemble modules, the model
degrades to the baseline method. When we detect the label
noise through the flipped images, the test accuracy on the test
set increases compared with the baseline, which illustrates
that using the unseen flipped images can help the model to
better filter out noisy samples. When we only use mean point
ensemble, the robust loss function and more information from
unselected samples improve the model performance. The re-
sults also show that using flip noise detection or mean point
ensemble alone can both help the model to achieve higher
performance than baseline while using the two modules to-
gether achieves the best performance. We conclude that the
two modules can be used separately to deal with noisy la-
bels while they can achieve the best performance when they
cooperate.

Visualization of Accuracy and Clean rate

We plot the test accuracy versus training epochs under differ-
ent noisy labels in Figure 3. When the noise rate is 20% or
50%, JoCoR can achieve high performance and the improve-
ment from our proposed method is limited. However, when
it comes to 80% noise, we can clearly view that JoCoR fails
in both CIFAR-10 and CIFAR-100 and achieves very low
performance. The results show that our method outperforms
JoCoR by a large margin when the noise rate is large. We
speculate the reason lies in that the flip noise detection mod-
ule selects more clean samples from data perspective and the
mean point ensemble utilize a more robust loss function and
more information from unselected samples to improve the
model performance. We further plot the clean rate of JoCoR
and our method under a large noise rate, it aligns with the
test accuracy curves, which confirms that our method selects
more clean samples.

Combine with Other Noisy Label Learning Methods

MDA can also be combined with other state-of-the-art noisy
label learning methods to further improve their performance.
As MDA deals with noisy labels from model and data per-

spectives, we can improve other small-loss selection methods
with MDA. Specifically, when selecting noisy samples, we
could use the loss values of the flipped images instead of the
original training images to reduce the error accumulation of
sample selection from the data perspective. When training
two models, we can combine the mean point ensemble with
other methods to ensemble the models utilizing a more ro-
bust loss function and the information of unselected samples.
Co-teaching maintains two different initialized models which
select clean samples for each other to suppress the error ac-
cumulation. We add our proposed method to Co-teaching
to improve its performance to show the plug-in and play
characteristics of our proposed method. We select clean sam-
ples using flipped images and add the mean point ensemble
loss during the whole training process of Co-teaching. The
results are shown in Table 5. Without bells and whistles,
Co-teaching plus MDA achieves the best performance under
all different noise levels on both CIFAR-10 and CIFAR-100
datasets, which illustrates that MDA can be seamlessly com-
bined with sample selection noisy label learning methods to
further improve their performance.

The Generalization Ability of MDA

MDA can also be utilized to solve other tasks. Facial Ex-
pression Recognition (FER) aims at helping computers to
understand human behavior or even interact with a human by
recognizing human expression. As we use flip noise detection
to filter out the noisy samples, our method can generalize to
other tasks with images of the same semantic meaning before
and after the flip. The images of facial expression recognition
are also symmetric. Thus, we carry out experiments on the
FER dataset RAF-DB (Li, Deng, and Du 2017) and com-
pare our method with several state-of-the-art FER noisy label
learning methods.

The results are shown in Table 6, we compare MDA with
Co-teaching (Han et al. 2018b). We also display some state-
of-the-art FER noisy label learning methods (Zhang, Wang,
and Deng 2021; Zhang et al. 2022; Wang et al. 2020), they
do not need the exact noise rate to filter out the exact ratio of
large-loss samples like Co-teaching and MDA. The results
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Figure 3: The test accuracy of JoCoR and MDA on CIFAR-10 and CIFAR-100. MDA outperforms JoCoR under all different
noise levels. We also plot the clean rate of the selected samples of the two methods learning with 80% label noise. MDA can
select a cleaner training set because of the flip noise detection and mean point ensemble.

Table 5: Combine with Co-teaching. We seamlessly combine the flip noise detection and mean point ensemble modules with the
existing noisy label learning method Co-teaching and observe that the two modules can further improve the performance of

Co-teaching.

Methods . CIFAR.IO . . CIFAR1.00 .

20% noise 50% noise 80% noise 20% noise 50% noise 80% noise
Baseline 69.38% 42.70% 16.55% 35.68% 17.38% 4.24%
Co-teaching 77.61% 71.16% 3321% 44.10% 35.15% 14.81%
Co-teaching + MDA| 84.76%  73.22%  33.24%  55.48% 4391%  26.32%

Table 6: MDA on noisy label FER tasks. MDA can also deal with other noisy label learning tasks. We compare MDA with
Co-teaching and other state-of-the-art FER noisy label learning methods.

Method 10% label noise  20% label noise  30% label noise
Baseline 81.01% 77.98% 75.50%
SCN 82.15% 79.79% 77.45%
RUL 86.17% 84.32% 82.06%
EAC 88.02% 86.05% 84.42%
Co-teaching 83.57% 81.75% 79.78%
MDA (Ours) 87.77% 87.18% 84.57%

imply that our proposed MDA can acquire state-of-the-art
performance knowing the exact noise rate compared with
other FER noisy label learning methods. Furthermore, Co-
teaching also needs to know the exact noise rate to filter out
large-loss samples, while it does not generalize well to FER
noisy label learning task as its performance is outperformed
by MDA by a large margin under all the different noise levels.

Conclusion

In this paper, we deal with noisy label learning from both
model and data perspectives. We introduce mean point en-
semble to utilize a more robust loss function and guide the

two models with the information from unselected samples.
We also find that the flipped images can be utilized to better
detect noisy samples and achieves better performance than
just using flip as an augmentation method. Extensive experi-
ments validate that our proposed MDA method outperforms
other state-of-the-art noisy label learning methods and each
of the modules improves the JoCoR method. Furthermore,
MDA can be seamlessly combined with other noisy label
learning methods to further improve their performance and
generalize well to other noisy label learning tasks.
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