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Abstract

Contrastive learning has emerged as a competitive pretrain-
ing method for object detection. Despite this progress, there
has been minimal investigation into the robustness of con-
trastively pretrained detectors when faced with domain shifts.
To address this gap, we conduct an empirical study of con-
trastive learning and out-of-domain object detection, study-
ing how contrastive view design affects robustness. In partic-
ular, we perform a case study of the detection-focused pretext
task Instance Localization (InsLoc) and propose strategies to
augment views and enhance robustness in appearance-shifted
and context-shifted scenarios. Amongst these strategies, we
propose changes to cropping such as altering the percent-
age used, adding IoU constraints, and integrating saliency-
based object priors. We also explore the addition of shortcut-
reducing augmentations such as Poisson blending, texture
flattening, and elastic deformation. We benchmark these
strategies on abstract, weather, and context domain shifts and
illustrate robust ways to combine them, in both pretraining on
single-object and multi-object image datasets. Overall, our re-
sults and insights show how to ensure robustness through the
choice of views in contrastive learning.

Introduction
Self-supervised learning has been rising in popularity in
computer vision, with many top methods using contrastive
learning (Hadsell, Chopra, and LeCun 2006), a form of
learning that optimizes feature representations for positive
samples to be close together and for negative samples to
be far apart. Self-supervised contrastive models such as
SimCLR (Chen et al. 2020a) and MoCo (He et al. 2020)
have been shown to approach or surpass the performance of
supervised models when representations are transferred to
downstream image classification, object detection, and se-
mantic segmentation tasks (Ericsson, Gouk, and Hospedales
2021). This success is in part due to strategic data augmen-
tation pipelines that these models use to create effective pos-
itive and negative views (samples) for learning.

Despite this progress, the out-of-distribution robustness
of contrastive representations has been minimally studied,
especially with regards to object detection. We hypothe-
size that existing data augmentation pipelines in contrastive
learning may result in representations that lack robustness
in such domain-shifted detection scenarios. For example,
as shown in Fig. 1, state-of-the-art pipelines (e.g. SimCLR,

Figure 1: What properties of contrastive views enable ro-
bust downstream object detection? Existing contrastive
view design methods may cause detectors to lack robust-
ness in domain-shifted settings (e.g. appearance, context).
For instance, state-of-the-art pipelines use random cropping,
which may cause contextual bias as objects can be aligned
to common backgrounds (e.g. boat in a, horses in b) or co-
occurring objects (e.g. player, glove, ball, and bat in c). Due
to a lack of spatial consistency between views, its use may
also discourage the learning of object shape (e.g. cat in d).

MoCo) create positive views with aggressive random crop-
ping of a single image. Such use of this augmentation can
lead to features for object regions being made similar to
those for the background or co-occurring objects, potentially
causing contextual bias and hurting in out-of-context sce-
narios. Random cropping may also result in texture-biased
rather than shape-biased features, since the shapes of object
parts may not be consistent across crops. A lack of shape
in representations can lead to degraded performance when
texture is shifted (e.g. appearance changes due to weather).

In this work, we explore strategies to improve contrastive
view design for enhanced robustness in domain-shifted de-
tection. In particular, we conduct an empirical study of the
state-of-the-art detection pretext task InsLoc (Yang et al.
2021) and strategically alter the views created from InsLoc’s
data augmentation pipeline by adjusting cropping, adding
shortcut-reducing appearance augmentations, and integrat-
ing saliency-based object priors. These strategies are evalu-
ated in-domain and out-of-domain in appearance-shifted and
context-shifted detection scenarios. Experiments are also
conducted following pretraining on both single-object and
multi-object image datasets. From these experiments, we
present these insights into contrastive view design:

• Increasing the minimum % of an image used for crops
or adding an IoU constraint between views causes the
model to learn from spatially consistent views with larger
object parts. These strategies encourage the learning of
shape and improve robustness to appearance shifts.



• Shortcut-reducing augmentations enhance the effective-
ness of non-aggressive cropping, exemplified by im-
provements over InsLoc both in-domain (up to +2.73 AP)
and out-of-domain (up to +3.07 AP).

• The use of saliency priors in views is effective for out-of-
context robustness. Their use is best in a mechanism that
removes background and tightens crops to object regions.

• Applying shortcut-reducing augmentation to the non-
salient regions in views, in combination with crop tight-
ening and shape strategies, is effective for enhancing ro-
bustness to both appearance and context shifts.

Background and Related Work
Self-supervised and contrastive learning Many top self-
supervised methods in vision use contrastive learning and
the instance discrimination pretext task (Wu et al. 2018),
where each image is its own class, and the goal is to discern
that two positive samples (or views) are from the same image
when considered versus a set of negatives. Typically, posi-
tives are generated through aggressive data augmentation of
a single image, and they are compared to a large number
of negatives from other images. While the representations
for negatives have been stored in large memory banks (Wu
et al. 2018), recent methods optimize the learning pipeline to
rather use large batch sizes (Chen et al. 2020a) or a dynamic
dictionary (He et al. 2020). Alternatively, the online clus-
tering approach of (Caron et al. 2020) avoids the need for
pairwise comparisons entirely, and the iterative approach of
BYOL (Grill et al. 2020) avoids using negatives. In general,
contrastive methods are evaluated by transferring represen-
tations to downstream tasks such as object detection, and do-
main shifts are not usually considered with detection. Gen-
eral detectors have been shown to lack robustness to shifts,
retaining only 30-60% of performance when tested on nat-
ural corruptions (Michaelis et al. 2019), and contrastive de-
tectors may similarly lack robustness. In this work, we fill in
the need to more broadly characterize and improve the gen-
eralizability of contrastive representations through our study
of view design strategies in domain-shifted detection.

Data augmentations and views in contrastive learning
Recent works have investigated how to construct positive
and negative views for contrastive learning. In particular,
topics explored include how to learn views (Tian et al. 2020),
how to mine hard negatives (Kalantidis et al. 2020; Robinson
et al. 2021b), how to handle false negatives (Chuang et al.
2020), and how to modify sample features to avoid short-
cuts (Robinson et al. 2021a). Positives have also been stud-
ied with regards to intra-image augmentations and instance
discrimination. For instance, SimCLR (Chen et al. 2020a)
finds that creating positives with random cropping, color dis-
tortion, and Gaussian blur is effective for ImageNet classifi-
cation. In this work, we also empirically explore augmenta-
tions for positives, but consider those specifically targeting
domain robustness in detection, which include some previ-
ously unexplored in contrastive learning: Poisson blending,
texture flattening, and elastic deformation. We also show
that modifying cropping to be less aggressive or use IoU
constraints can improve out-of-domain robustness.

Robustness in contrastive learning Neural network rep-
resentations have been shown to not generalize well to var-
ious domain shifts (e.g. pose (Alcorn et al. 2019), corrup-
tions (Hendrycks and Dietterich 2019)) and to suffer from
biases (e.g. texture (Geirhos et al. 2019), context (Singh
et al. 2020), background (Xiao et al. 2021)). Contrastive
representations face similar issues, for instance versus view-
point shifts (Purushwalkam and Gupta 2020) and texture-
shape conflicts (Geirhos et al. 2020). Most works that strive
to explicitly improve contrastive robustness either focus on
image recognition (Ge et al. 2021; Khosla et al. 2020), proxy
recognition tasks like the Background Challenge (Xiao et al.
2021), or evaluate only when transferring representations to
object detection, but not on domain shifts in detection. We
alternatively consider contrastive robustness with respect to
object detection and relevant domain shifts. One shift we
consider is in context, as research has identified contextual
bias as an issue in contrastive pretraining on multi-object im-
age datasets. For example, (Selvaraju et al. 2021) addresses
contextual bias in COCO pretraining by constraining crops
to overlap with saliency maps and using a Grad-CAM atten-
tion loss, leading to improvements over MoCo on COCO
and VOC detection. Similarly, (Mo et al. 2021) proposes
two augmentations, object-aware cropping (OA-Crop) and
background mixup (BG-Mixup), to reduce contextual bias
in MoCo-v2 and BYOL. Notably, these cropping strategies
have minimally been tested with detection (just in-domain),
so it is unclear how such strategies perform in out-of-domain
detection. We evaluate these strategies out-of-domain and
show that they do not always result in improvements. We
thus propose a hybrid strategy of the methods and show that
it substantially improves out-of-context robustness.

Pretext tasks for object detection Our research also fits
with recent works that tailor pretraining to downstream tasks
besides image classification, such as object detection. In par-
ticular, we explore InsLoc, a pretext task in which detection-
focused representations are built in contrastive learning
through integration of bounding box information (Yang et al.
2021). Other notable approaches exist which leverage se-
lective search proposals (Wei et al. 2021), global and local
views (Xie et al. 2021a), spatially consistent representation
learning (Roh et al. 2021), weak supervision (Zhong et al.
2021), pixel-level pretext tasks (Wang et al. 2021; Xie et al.
2021b), and transformers (Dai et al. 2021). Our work is or-
thogonal to such works as we provide contrastive view de-
sign insights that can guide future detection-focused pretext
tasks to have greater out-of-domain robustness.

Experimental Approach
In this study, our goal is to analyze how strategic changes
to contrastive views impact downstream object detection ro-
bustness. In particular, we consider two families of domain
shifts that cause drops in object detection performance: ap-
pearance and context. Appearance shift in our study is de-
fined as change in the visual characteristics of objects (such
as color brightness and texture). Context shift in our study is
defined as when an object appears with different objects or
in different backgrounds during train and test time.



Formally, we view contrastive learning from a knowledge
transfer perspective. There is a source (pretext) task s and
a downstream object detection task d. Unsupervised, con-
trastive pretraining is performed in s on dataset s, then rep-
resentations are transferred to d for supervised finetuning on
dataset d. We explore strategies to adapt s to s′, which rep-
resents a task with views augmented to be robust to families
of domain shifts (e.g. appearance, context). To evaluate the
effectiveness of s′, representations from s′ (after finetuning
on d) are evaluated on d and various ti, which represent
target datasets domain-shifted from d.

Base pretext task We select s to be Instance Localiza-
tion (InsLoc) (Yang et al. 2021), a state-of-the-art detection-
focused, contrastive pretext task. In particular, InsLoc is
designed as an improvement over MoCo-v2 (Chen et al.
2020b) and uses the Faster R-CNN detector (Ren et al.
2015). Positive views are created by pasting random crops
from an image at various aspect ratios and scales onto ran-
dom locations of two random background images. Instance
discrimination is then performed between foreground fea-
tures obtained with RoI-Align (He et al. 2017) from the two
composited images (positive query and key views) and nega-
tives maintained in a dictionary. This task is optimized with
the InfoNCE loss (Van den Oord, Li, and Vinyals 2018).

Outlining the specifics of InsLoc’s augmentation pipeline
further, the crops used for views are uniformly sampled to
be between 20-100% of an image. Crops are then resized to
random aspect ratios between 0.5 and 2 and width and height
scales between 128 and 256 pixels. Composited images have
size 256×256 pixels. Other augmentations used include ran-
dom applications of Gaussian blurring, horizontal flipping,
color jittering, and grayscale conversion. Notably, InsLoc’s
appearance augmentations and cropping are characteristic of
state-of-the-art contrastive methods (Chen et al. 2020a; He
et al. 2020), making InsLoc a fitting contrastive case study.

Strategies to enhance InsLoc We propose multiple
strategies to augment the InsLoc view pipeline (s’) for en-
hanced robustness in appearance-shifted and out-of-context
detection scenarios. First, we consider cropping since In-
sLoc, like other contrastive methods (Chen et al. 2020a; He
et al. 2020), uses aggressive random cropping to create posi-
tive views (see Fig. 1). As random cropping has been shown
to bias a model towards texture (Hermann, Chen, and Korn-
blith 2020), we reason that InsLoc may struggle when tex-
ture shifts in detection such as when it is raining or snowing.
Models that learn shape on the other hand can be effective in
such situations (Geirhos et al. 2019). We thus explore simple
strategies to encourage InsLoc to learn shape. In particular,
we experiment with geometric changes to crops, specifically
increasing the minimum % of an image used to crop m and
enforcing an IoU constraint t between views. We expect such
changes to increase the spatial consistency between crops
and encourage the model to learn object parts and shapes. In
turn, the model can become more robust to texture shifts.

Furthermore, we consider adding shortcut-reducing ap-
pearance augmentations, as we find that InsLoc may not ad-
equately discourage the model from attending to shortcuts
that are non-robust in appearance-shifted scenarios, such as

Figure 2: Our shortcut-reducing augmentations of study,
shown within InsLoc. We perform each augmentation on the
crop in the query view (left), but not in the key view (right).

high-frequency noise and texture or color histograms. One
strategy we explore is Poisson blending (Pérez, Gangnet,
and Blake 2003), which is a method to seamlessly blend
crops into a background image. We use Poisson blending in-
stead of simple copy-pasting in InsLoc to reduce contrast be-
tween foreground and background regions, effectively mak-
ing the pretext task harder as the model cannot use contrast
as a shortcut to solve the task. It is also found that Poisson
blending can introduce random illumination effects from the
background, which may be desirable to learn invariance to-
wards for appearance shifts. Second, we explore the texture
flattening application of solving the Poisson equation, as it
washes out texture and changes brightness while only pre-
serving gradients at edge locations. We reason that this aug-
mentation can be effective to teach the model to not over-
fit to high-frequency texture shortcuts. Last, we investigate
elastic deformation (Simard et al. 2003), an augmentation
that alters images by moving pixels with displacement fields.
This augmentation can help make features more invariant
to local changes in edges and noise shortcuts. We illustrate
our proposed use of these strategies in Fig. 2. Augmenta-
tions are applied 100% of the time, unless otherwise noted.
We use Poisson blending and texture flattening as provided
in the OpenCV library (Bradski 2000) and the algorithm of
(Simard et al. 2003) for elastic deformation.

Lastly, we note that random cropping may result in the
aligning of context (background and objects or objects and
objects), which can lead to representations that are contex-
tually biased and not robust in out-of-context detection. To
address this problem, we experiment with strategies that use
saliency-based object priors for crops, as they can enable
crops to refer to specific object regions rather than to back-
ground or co-occurring objects. In particular, we investigate
two state-of-the-art approaches (Mo et al. 2021; Selvaraju
et al. 2021), as well as a hybrid of such approaches. We com-
pare each strategy out-of-domain and also consider combin-
ing saliency strategies with shape and appearance strategies.

Pretraining and finetuning datasets We identify two
pretraining scenarios s to evaluate the robustness of con-
trastive view design strategies. First is ImageNet pretraining
(Krizhevsky, Sutskever, and Hinton 2012), a standard sce-
nario for contrastive approaches (Chen et al. 2020a; He et al.
2020). With the heavy computational nature of contrastive
pretraining, along with our goal to conduct multiple experi-
ments, we sample ImageNet from over 1 million to 50,000
images and call this set ImageNet-Subset. Notably, most Im-



Figure 3: Our domain-shifted test sets. Weather and Abstract
are for appearance shifts, and UnRel is for context shifts.

ageNet images are iconic, containing a single, large, cen-
tered object. For a dataset with different properties, we also
consider pretraining on COCO (Lin et al. 2014), which con-
tains more scene imagery, having multiple, potentially small
objects. With the goal of self-supervised learning to learn ro-
bust representations on large, uncurated datasets, which are
likely to contain scene imagery, COCO is a practical dataset
to study. Also its multi-object nature makes it an apt test case
for benchmarking contextual bias downstream. We pretrain
specifically with COCO2017train and do not sample since
its size is relatively small (118,287 images).

We explore two finetuning datasets d: VOC (Everingham
et al. 2010) when s is ImageNet-Subset and both VOC and
COCO2017train when s is COCO. For VOC, we specif-
ically use VOC0712train+val (16,551 images). We evalu-
ate on COCO2017val (5,000 images) and VOC07test (4,952
images). In our sampling of ImageNet, we ensure seman-
tic overlap with VOC by choosing 132 images for each of
379 classes from 13 synset classes that are related to VOC’s
classes: aircraft, vehicle, bird, boat, container, cat, furniture,
ungulate, dog, person, plant, train, and electronics.

Domain shift datasets We select various datasets ti for
out-of-domain evaluation. First, when d is VOC, we test
on the challenging, abstract Clipart, Watercolor, and Comic
object detection datasets (Inoue et al. 2018), as they repre-
sent significant domain shifts in appearance. Clipart has the
same 20 classes as VOC and 1,000 samples, while Water-
color and Comic share 6 classes with VOC and have 2,000
samples each. We take the average performance across the
three sets and describe the overall set as Abstract. When d is
COCO, we test on the out-of-context UnRel dataset (Peyre
et al. 2017). This set captures relations that are “unusual” be-
tween objects (e.g. car under elephant), making this set use-
ful for evaluating out-of-context robustness. We evaluate on
29 classes which overlap with COCO thing classes (1,049
images). Lastly, for both VOC and COCO, we consider
Pascal-C and COCO-C (Michaelis et al. 2019), a collection
of sets that are synthetically domain-shifted on natural cor-
ruption types. In particular, we explore the appearance-based
Weather split at severity level 5, which consists of bright-
ness, fog, frost, and snow shifts. We refer to the overall sets
for VOC and COCO as VOC-Weather and COCO-Weather,
respectively. Examples for the test sets are shown in Fig. 3.

Training setup Pretraining is performed with the pro-
vided InsLoc implementation (Yang et al. 2021). Faster R-
CNN (Ren et al. 2015), with a ResNet-50 backbone and

Figure 4: In-domain (VOC) vs. out-of-domain (Abstract,
VOC-Weather) AP for models pretrained in InsLoc with var-
ious values of IoU constraint t and minimum % crop m, aver-
aged over three trials. Note that the top-performing settings
for domain robustness (0.70 IoU constraint, 45-100% crop)
are different from the settings of the InsLoc baseline (20-
100% crop and no IoU constraint).

FPN, serves as the trained detector. With high computational
costs for contrastive pretraining, these experiments consider
a fixed pretraining budget of 200 epochs. For COCO, pre-
training is performed with per-GPU batch size 64 and learn-
ing rate 0.03 on 4 NVIDIA Quadro RTX 5000 GPUs with
memory 16 GB. For ImageNet-Subset, pretraining is per-
formed with per-GPU batch size 32 and learning rate 0.015
on 2 NVIDIA GeForce GTX 1080 Ti GPUs with memory 11
GB. All pretraining uses a dictionary size of K=8,192. Full
finetuning of all layers is performed within the Detectron2
(Wu et al. 2019) framework with a 24k iteration schedule,
a learning rate of 0.02, and a batch size of 4 on 2 NVIDIA
GeForce GTX 1080 Ti GPUs, unless otherwise noted.

Experiments and Analysis
In this section, we outline various strategies for contrastive
view design and evaluate their effectiveness in the InsLoc
pretext task, considering both pretraining on ImageNet-
Subset and COCO. Evaluation metrics are AP and AP50.

Pretraining on ImageNet-Subset
How can we encourage contrastive learning to capture
object shape and become more robust to appearance do-
main shifts? First, we consider appearance domain shifts
in detection, where object shapes are preserved and texture
is distorted. We wish to encourage InsLoc to capture ob-
ject shapes for such scenarios and thus propose two simple
strategies: (1) increasing the minimum % of an image sam-
pled as a crop m and (2) adding an IoU contraint t, such that
query and key crops must have at least such IoU. To evalu-
ate these strategies, we pretrain InsLoc on ImageNet-Subset
using two different values of m, 45% and 70%, in addition
to InsLoc’s default value of 20%, while keeping the maxi-
mum crop bound as 100%. InsLoc is additionally pretrained
with two IoU constraint values of t, 45% and 70%. Then for
each experiment, we perform finetuning on VOC and eval-
uate in-domain on VOC and out-of-domain on Abstract and
VOC-Weather (two sets with distorted texture).

Results over three trials are shown in Fig. 4. Notably, we
find that the default InsLoc settings (20-100% crops, no IoU
constraint) result in the best in-domain AP, but not the top
out-of-domain AP. In particular, m=45 and t=70 have the



Method VOC Abstract Weather
AP AP AP

InsLoc, m=20 (Baseline) 38.91 10.84 16.66
+Poisson Blending, m=20 38.49 11.95 16.98

InsLoc, m=45 38.86 11.41 17.45
+Poisson Blending, m=45 40.22 12.96 19.23

InsLoc, m=70 38.01 11.19 16.96
+Poisson Blending, m=70 40.54 13.00 19.73

InsLoc, t=70 38.13 12.03 17.17
+Poisson Blending, t=70 39.31 11.97 18.36

Table 1: In-domain (VOC) vs. out-of-domain (Abstract,
VOC-Weather) AP following InsLoc pretraining with and
without Poisson blending InsLoc’s query crop, for various
values of min % crop m and IoU threshold t. Note that the
use of our Poisson blending strategy results in substantial
in-domain and out-of-domain gains, especially at m=70.

highest out-of-domain AP for their respective value com-
parisons (up to +1.19 AP on Abstract, +0.79 AP on VOC-
Weather). In general, these results show out-of-domain ben-
efits with having substantial overlap and higher minimum
crop %. Overall, these results highlight that including larger
object regions in crops and encouraging spatial consistency
between views are effective strategies to ensure greater ro-
bustness to appearance shifts. We also note that the robust-
ness sweet spot for m may be related to an observed trade-
off with in-domain AP, which drops as m or t increases. We
reason that while we are encouraging the model to learn
shape features, we are also increasing the probability that the
model can attend to natural, high-frequency shortcuts in im-
ages since crops that have more area and overlap more might
share more of these signals. We next consider augmentations
to remove shortcuts and improve these strategies.

Can shortcut-reducing augmentations make shape
strategies more effective? Though contrastive view
pipelines typically have significant appearance augmenta-
tions like Gaussian blur, grayscale conversion, and color jit-
ter (Chen et al. 2020b), we reason that even more aggressive
augmentations may be beneficial with our % crop and IoU
strategies to further limit shortcuts and better learn shape.
SimCLR (Chen et al. 2020a) serves as motivation, as the au-
thors explore augmentations to avoid color histogram short-
cuts. We explore Poisson blending, texture flattening, and
elastic deformation as stronger augmentations to similarly
reduce shortcuts and enable InsLoc to learn robust features.

To first test how augmentations interact with the % crop
and IoU strategies, we perform Poisson blending with var-
ious values of m and t, shown in Table 1. Different from
in Fig. 4, we find that the top domain robustness setting is
m=70 (rather than t=70) and that significant out-of-domain
gains over the InsLoc baseline are achieved in such setting
(+2.16 AP on Abstract, +3.07 AP on VOC-Weather). More-
over, we find that in-domain AP also increases in this setting
(+1.63 AP), indicating that shortcut augmentations can en-
able the learning of shape without tradeoffs in-domain. Note

Method VOC Abstract Weather
AP AP AP

InsLoc, m=20 (Baseline) 38.91 10.84 16.66
InsLoc, m=70 38.01 11.19 16.96

+Poisson Blending, m=70 40.54 13.00 19.73
+Elastic Deformation, m=70 40.94 13.26 18.70
+Texture Flattening, m=70 40.45 13.57 19.58

+Apply 25% of Time, m=70 41.64 12.53 19.70

Table 2: In-domain (VOC) vs. out-of-domain (Abstract,
VOC-Weather) AP when pretraining InsLoc with shortcut-
reducing augmentations at min % crop m=70. “Apply 25%
of Time” means that we either apply Poisson blending, ap-
ply elastic deformation, apply texture flattening, or use the
baseline setting, each with probability 25%.

also that Poisson blending at m=20 is not effective in-domain
and is less effective out-of-domain. These results indicate
that shortcut-reducing augmentations may not be effective
unless the model is encouraged to capture robust object fea-
tures like shape, which can be done at higher crop %.

We further use the top setting of m=70 to test each of
Poisson blending, elastic deformation, and texture flattening,
shown over three trials in Table 2. We find that all augmenta-
tions help both in-domain and out-of-domain. In particular,
Poisson blending is the top for VOC-Weather (+3.07 AP)
and texture flattening is for Abstract (+2.73 AP). We reason
that texture flattening simulates the flattened texture of digi-
tal Abstract imagery well, while Poisson blending’s random
illumination effects are helpful for the texture changes seen
with weather. Also shown in Table 2 is a scenario where we
either apply one of the three augmentations or just use the
default InsLoc setting, each with probability 25%. We find
even more substantial gains in-domain (+2.73 AP) in such
scenario. These results demonstrate that the benefits of cre-
ating views with shape-encouraging and shortcut-reducing
strategies are not limited to out-of-domain robustness, and
these strategies can lead to more robust object features over-
all. To our knowledge, we are the first to demonstrate such
effectiveness of Poisson blending, texture flattening, and
elastic deformation as augmentations for contrastive views.

Pretraining on COCO
How do saliency-based view strategies compare on out-
of-context and appearance domain shifts? Intra-image
cropping in contrastive learning has been noted to be po-
tentially harmful when pretraining on multi-object images
(e.g. COCO) (Purushwalkam and Gupta 2020). Approaches
have aimed to reduce the impact of contextual bias in such
case through using saliency-based object priors, with OA-
Crop (Mo et al. 2021) and CAST (Selvaraju et al. 2021)
representing two more robust cropping methods. OA-Crop
uses an initial pretraining of MoCo-v2 to gather Contrastive
Class Activation Maps and creates a number of object crops
for an image from bounding boxes around salient regions
from these maps. During training, one randomly selected ob-



Figure 5: CAST (Selvaraju et al. 2021) vs. DeepUSPS-
Tightened crops. The blue box shows a randomly chosen
object crop that is the source for query and key views. Green
and orange boxes show example query and key crops.

Cropping Method COCO UnRel Weather
AP50 AP50 AP50

InsLoc 26.16 22.60 10.53

+OACrop 25.55 23.10 9.82
+CAST 26.70 22.36 10.58

+DeepUSPS-Tight, m=8 27.76 24.59 12.20
+DeepUSPS-Tight, m=20 28.39 26.11 12.33

Table 3: In-domain (COCO) vs. out-of-domain (UnRel,
COCO-Weather) AP50 of saliency strategies within InsLoc.
For InsLoc, OACrop, and CAST, results are with the default
or optimal cropping values if reported (m=20, 8, and 20 re-
spectively). DeepUSPS-Tightened is tested at m=8 and 20.

ject crop, rather than the entire image, is used as the source
from which to crop views. CAST alternatively ensures that
crops overlap with saliency maps gathered with DeepUSPS
(Nguyen et al. 2019), an “unsupervised” saliency detector
(though it still uses ImageNet-supervised weights).

Notably, these methods have not been evaluated in out-of-
domain detection, so we fill in this gap by comparing them
within InsLoc. We also consider a hybrid approach called
DeepUSPS-Tightened crops, where DeepUSPS saliency
maps, rather than ContraCAMs, are used to create object
crops like OA-Crop, as we observe DeepUSPS’s maps are
higher quality. We emphasize that the difference between be-
tween CAST and DeepUSPS-Tightened crops is that maps
are used with CAST to ensure that crops overlap with ob-
jects, rather than to reduce background area and tighten
crops to objects, which is the goal of the hybrid that we pro-
pose. We exemplify these differences in Fig. 5.

In Table 3, we compare each strategy following COCO
pretraining and finetuning in terms of AP50 on COCO, the
out-of-context UnRel, and the appearance-shifted COCO-
Weather. We use the saliency maps provided by (Mo et al.
2021) and (Selvaraju et al. 2021), as well as their top re-
ported min % crop (or default if not reported). We also test
DeepUSPS-Tightened at m=8 and m=20. A first observation
is that there is a significant domain gap (-3.56 AP50) be-
tween COCO and UnRel without incorporating any saliency
strategy, indicating contextual bias in downstream object
detection. The OACrop strategy improves AP50 on UnRel,
while CAST does not. Alternatively, CAST improves on
COCO and COCO-Weather (slightly) while OA-Crop does
not. Notably, our hybrid DeepUSPS-Tightened leads to the
top gains vs. InsLoc (+2.23 AP50 on COCO, +3.51 AP50 on
UnRel, +1.80 AP50 on COCO-Weather). The domain gap is
much smaller than InsLoc as well (-2.28 vs. -3.56 AP50).

Figure 6: Our proposed texture flattening of non-salient re-
gions (TFNS) augmentation vs. full image texture flattening.

Method COCO UnRel Weather
AP50 AP50 AP50

InsLoc 26.16 22.60 10.53

+DeepUSPS-Tight/TF 27.73 25.27 11.94
+DeepUSPS-Tight/TFNS 28.74 25.71 12.44

Table 4: In-domain (COCO) vs. out-of-domain (UnRel,
COCO-Weather) AP50 for full image (TF) vs. non-salient
region texture flattening (TFNS) of InsLoc query crops in
combination with DeepUSPS-Tightened strategy (at m=70),
with respect to InsLoc baseline (at m=20).

We infer that the high quality of DeepUSPS maps along
with the removal of background through cropping are poten-
tial reasons for DeepUSPS-Tightened to have the top AP50.
In detection pretraining, we reason that it may not be impor-
tant to include background in crops, and that strategic use
of a quality saliency detector can enable detectors to be less
biased and more robust out-of-context.

Can shape and shortcut-reducing strategies further help
robustness with saliency strategies? While tightened
crops remove many non-salient pixels, some remain inside
crops. The pretext task can thus be solved by matching pos-
itives based on the background, rather than objects, which
can hurt out-of-context robustness. Moreover, aggressive
cropping of even object-based crops can still lead to rep-
resentations that do not capture shape well, hurting appear-
ance shift robustness. Inspired by the ImageNet-Subset ex-
periments, we also explore shape and appearance strategies
with COCO pretraining. In particular, we consider m=70 as
a shape strategy and texture flattening as a shortcut-reducing
strategy. Since we have saliency maps, we also propose an-
other strategy: texture flattening of non-salient regions only
(TFNS). We specifically propose to distort the background
(non-salient regions marked by DeepUSPS) of one InsLoc
view to encourage background invariance between views
during pretraining. We reason that TFNS may be effective
for out-of-context robustness as shortcuts may come more
significantly from the background rather than salient object
regions. We illustrate this proposed augmentation in Fig. 6.

In Table 4, we show results with m=70, DeepUSPS-
Tightened crops, and texture flattening (full and just non-
salient regions). We observe that both strategies are effec-
tive, and TFNS leads to larger gains across all sets. We rea-
son that learning some level of texture, even with shape, is
important, and TFNS preserves important texture (of ob-
jects) while removing unimportant texture (high-frequency
shortcuts which come from the background).



VOC Finetuning COCO Finetuning
Method Crop % Augmentations VOC Abstract Weather COCO UnRel Weather

AP AP AP AP50 AP50 AP50

InsLoc 20-100 Default 39.79 11.31 18.47 26.16 22.60 10.53
70-100 Default 38.45 12.19 17.37 24.70 20.87 9.56
20-100 +TFNS 40.43 12.45 19.42 26.94 23.00 11.37
70-100 +TFNS 40.09 12.56 19.05 27.12 23.03 11.25

InsLoc 8-100 Default 40.87 11.03 19.85 27.76 24.59 12.20
+DeepUSPS-Tightened 20-100 Default 41.56 11.78 19.86 28.39 26.11 12.33

70-100 Default 39.30 12.11 17.69 25.46 22.66 10.67
8-100 +TFNS 41.08 12.48 20.64 28.44 27.31 12.27

20-100 +TFNS 41.70 12.50 19.54 28.66 24.93 12.12
70-100 +TFNS 41.80 13.18 20.46 28.74 25.71 12.44

Table 5: InsLoc+DeepUSPS-Tightened vs. InsLoc pretrained at various crop % and with/without texture flattening of non-
salient regions (TFNS), using 24k schedule for both VOC and COCO finetuning. Underlined=top per method, bold=best overall.

For a more thorough evaluation of TFNS and DeepUSPS-
Tightened, in Table 5, we present results of InsLoc with
these strategies and various values of m, in finetuning on
both VOC and COCO. We find that the combination of
DeepUSPS-Tightened, m=70, and TFNS results in the top
AP on VOC and Abstract and the top AP50 on COCO
and COCO-Weather. These results illustrate the high over-
all effectiveness of combining shape, shortcut-reducing, and
saliency strategies. We also observe that the top perfor-
mance on UnRel (27.31 AP50) is achieved at m=8, along
with TFNS and DeepUSPS-Tightened. We reason that since
context is a “natural” domain shift, where object texture is
preserved, shape may less useful, and aggressive cropping
at m=8 of object crops with mostly salient pixels can re-
sult in effective texture features. High performance is even
achieved on VOC-Weather in this setting, demonstrating
these features to be robust to some texture shift. A last note
is that we find TFNS gains to be highest at m=70, which
makes sense as many non-salient pixels exist in such views.

How does texture flattening of non-salient regions com-
pare to another strategy for context debiasing? We gain
further understanding of the effectiveness of TFNS through
evaluating it versus replacing the query crop’s non-salient
pixels with a random grayscale value, a top background de-
biasing strategy (Ryali, Schwab, and Morcos 2021; Zhao
et al. 2021). Results are shown for COCO pretraining and
VOC finetuning in Table 6. We find that TFNS outperforms
the grayscale strategy on all sets. We reason that TFNS is
more beneficial for background debiasing as in distorting
the background, it maintains continuity between an image’s
salient and non-salient pixels, making images seen in pre-
training more natural and closer to those seen at test time.

How are results at a longer training schedule? In Table
7, we lastly show that our strategies maintain effectiveness
on COCO even when using a longer finetuning schedule (the
2×, 180k iteration schedule from (Yang et al. 2021)). Gains
can notably be observed on both out-of-domain test sets:
+1.58 AP on UnRel and +0.27 AP on COCO-Weather.

Method VOC Abstract Weather
AP AP AP

InsLoc+RandGrayBG 40.99 12.97 18.36
InsLoc+TFNS 41.80 13.18 20.46

Table 6: InsLoc+DeepUSPS-Tightened (m=70), using query
crops with random grayscale backgrounds (RandGrayBG)
vs. crops with non-salient region texture flattening (TFNS).

Method COCO UnRel Weather
AP AP50 AP AP50 AP AP50

InsLoc 29.63 46.50 25.88 41.68 14.25 23.32
Ours 30.08 47.30 27.46 42.93 14.52 23.81

Table 7: InsLoc with our top strategies (DeepUSPS-
Tightened, m=70, and texture flattening of non-salient re-
gions) vs. InsLoc baseline. Results are compared following
COCO pretraining and finetuning (using a 2× schedule).

Conclusion
In this work, we present contrastive view design strategies
to improve robustness to domain shifts in object detection.
We show that we can make the contrastive augmentation
pipeline more robust to domain shifts in appearance through
encouraging the learning of shape (with higher minimum
crop % and IoU constraints). Furthermore, combining these
shape strategies with shortcut-reducing appearance augmen-
tations is shown to lead to more robust object features over-
all, demonstrated by both in-domain and out-of-domain per-
formance improvements. Finally, when pretraining on multi-
object image datasets with saliency map priors, we find that
tightening crops to salient regions, along with texture flat-
tening the remaining non-salient pixels in a view, is an effec-
tive strategy to achieve out-of-context detection robustness.
Overall, these strategies can serve to guide view design in
future detection-focused, contrastive pretraining methods.
Acknowledgements: This work was supported by the Na-
tional Science Foundation under Grant No. 2006885.



References
Alcorn, M. A.; Li, Q.; Gong, Z.; Wang, C.; Mai, L.; Ku, W.-
S.; and Nguyen, A. 2019. Strike (with) a pose: Neural net-
works are easily fooled by strange poses of familiar objects.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 4845–4854.
Bradski, G. 2000. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools.
Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.;
and Joulin, A. 2020. Unsupervised learning of visual fea-
tures by contrasting cluster assignments. Advances in Neu-
ral Information Processing Systems, 33: 9912–9924.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020a.
A simple framework for contrastive learning of visual repre-
sentations. In International Conference on Machine Learn-
ing, 1597–1607. PMLR.
Chen, X.; Fan, H.; Girshick, R.; and He, K. 2020b. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297.
Chuang, C.-Y.; Robinson, J.; Lin, Y.-C.; Torralba, A.; and
Jegelka, S. 2020. Debiased contrastive learning. Advances
in Neural Information Processing Systems, 33: 8765–8775.
Dai, Z.; Cai, B.; Lin, Y.; and Chen, J. 2021. UP-DETR:
Unsupervised pre-training for object detection with trans-
formers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 1601–1610.
Ericsson, L.; Gouk, H.; and Hospedales, T. M. 2021. How
Well Do Self-Supervised Models Transfer? In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 5414–5423.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.;
and Zisserman, A. 2010. The Pascal visual object classes
(VOC) challenge. International Journal of Computer Vision,
88(2): 303–338.
Ge, S.; Mishra, S.; Li, C.-L.; Wang, H.; and Jacobs, D. 2021.
Robust Contrastive Learning Using Negative Samples with
Diminished Semantics. Advances in Neural Information
Processing Systems, 34.
Geirhos, R.; Narayanappa, K.; Mitzkus, B.; Bethge, M.;
Wichmann, F. A.; and Brendel, W. 2020. On the surprising
similarities between supervised and self-supervised models.
arXiv preprint arXiv:2010.08377.
Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wich-
mann, F. A.; and Brendel, W. 2019. ImageNet-trained CNNs
are biased towards texture; increasing shape bias improves
accuracy and robustness. In 7th International Conference
on Learning Representations, ICLR.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond,
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