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Abstract

Recently, the vision transformer (ViT) has achieved re-
markable performance in computer vision tasks and has
been actively utilized in colorization. Specifically, for point-
interactive image colorization, previous research that uses
convolutional layers is limited for colorizing partially an im-
age, which produces inconsistent colors in an image. Thus,
vision transformer has been used to alleviate this problem by
using multi-head self attention to propagate user hints to dis-
tant relevant areas in the image. However, despite the suc-
cess of vision transformers in colorizing the image and se-
lectively colorizing the regions with user propagation hints,
heavy underlying ViT architecture and the large number of
required parameters hinder active real-time user interaction
for colorization applications. Thus, in this work, we propose
a novel efficient ViT architecture for real-time interactive col-
orization, A-ColViT that adaptively prunes the layers of vi-
sion transformer for every input sample. This method flexi-
bly allocates computational resources of input samples, effec-
tively achieving actual acceleration. In addition, we demon-
strate through extensive experiments on ImageNet-ctest10k,
Oxford 102flower, and CUB-200 datasets that our method
outperforms the state-of-the-art approach and achieves actual
acceleration.

Introduction

Despite the difficulty of colorization due to the require-
ment of a semantic understanding of the scenery and nat-
ural colors that dwell in the wild, various image coloriza-
tion methods have shown remarkable results in restoring
grayscale photographs as well as black and white films. In
general, two colorization approaches contribute to the suc-
cess of colorization: automatic colorization and user-guided
colorization. First, as the name suggests, automatic coloriza-
tion does not require any additional reference images or
assistance. Previous automatic colorization methods gener-
ate single colorized result, yet colorization is an ill-posed
problem with uncertainty (Zhang et al. 2017b). In contrast,
user-guided colorization requires user-guided assistance or
an image-based reference to narrow down suitable color dis-
tributions.
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Among the user-guided colorization, the point-interactive
colorization methods (Yin, Gong, and Qiu 2019; Levin,
Lischinski, and Weiss 2004; Zhang et al. 2017b) help users
with user-guided hints to assist in colorizing an image, while
minimizing interaction with users. In particular, (Zhang
et al. 2017b) proposed a colorization method with U-net
architecture trained on ImageNet (Deng et al. 2009) and
training with synthetically generated user hints through 2-D
Gaussian sampling. However, prior works suffer from par-
tial colorization, where the unclear boundary of images is
not colored successfully. Furthermore, failure in consistent
colorization comes from the difficulty of propagating hints
to large and distant semantic regions. In order to tackle this
problem, (Yun et al. 2022) leverage the architecture of vision
transformers (ViT), allowing the model to learn to propagate
the user hints to other distant and similar regions with self-
attention. Also, they utilized local stabilizing layer for the
effective upsampling process. Despite the exceptional per-
formance of ViT in colorization applications, transformer-
based models contain redundant computations resulting in
slow inference speed. This problem limits users’ active in-
teractions on a variety of real-time colorization applications.

To address this challenging practical issue, we propose
a novel flexible end-to-end framework A-ColViT, the real-
time interactive colorization ViT that adaptively allocates
computational resources of input images. Our proposed
framework effectively utilizes a decision network to de-
termine which redundant layer, such as the attention and
Feed-Forward Network (FFN) layer, to skip in the trans-
former. In particular, we adapt Gumbel-Softmax trick (Mad-
dison, Mnih, and Teh 2016) to enable backpropagation in
the training process since the binary decisions from deci-
sion network are non-differentiable. In addition, we con-
duct extensive experiments on ImageNet-ctest10k, Oxford
102flowers, and CUB-200 datasets to validate the effective-
ness of A-ColViT and demonstrate that our framework out-
performs the state-of-the-art (SOTA) colorization method-
ology. Moreover, our visualization result illustrates whether
computational resources are effectively allocated based on
the easy and hard samples.

The main contributions of our work are summarized as
follows:

• We propose A-ColViT, a flexible real-time user interac-
tive colorization model, which input-adaptively allocates



computational cost based on the easy and hard samples.

• We propose a trainable decision network that determines
which redundant sub-layer of the transformer to skip
or retain to achieve efficiency and real-time colorization
needs.

• Through extensive quantitative experiments and quali-
tative analysis, we demonstrate that our model outper-
forms the existing point-interactive colorization with vi-
sion transformer with improved inference speed.

Related Work

Interactive Colorization

Learning-based colorization methods do not require user in-
teraction to generate adequate color images, while interac-
tive methods require user-provided conditions to produce
specified colored images. Reference-based colorization is
one of the most popular interactive methods, which uses
single reference images to provide overall color informa-
tion (He et al. 2018; Bai et al. 2022; Zhang et al. 2017a).
However, since the colorized image is highly dependent on a
reference image, it is challenging for the user to modify par-
ticular regions in the colorized image. Moreover, the point-
interactive colorization model enables users to provide pre-
cise 2 × 2 ∼ 7 × 7 color hints on particular input image
regions to cover small regions of the full image, raising the
importance of minimal user effort. Previous works detected
simple patterns with image filters that determine the propa-
gation portion of each hint, which is propagated within the
region by optimization methods (Yin, Gong, and Qiu 2019;
Levin, Lischinski, and Weiss 2004). Convolutional layers
must be stacked deeply to propagate user hints from one
region to a distant region, making the colorization of large
semantic regions complex compared to relatively adjacent
regions.

Colorization with Transformers

In contrast to the previous convolution-based technique
in image synthesis, recent prior works utilized transform-
ers (Kumar, Weissenborn, and Kalchbrenner 2021; Yin
et al. 2021; Huang, Zhao, and Liao 2022; Ji et al. 2022)
to automatically colorize images. (Kumar, Weissenborn,
and Kalchbrenner 2021) proposed Colorization Transformer
(ColTran) based on Axial Transformer (Ho et al. 2019) self-
attention to unconditionally generate coarse low-resolution
grayscale image and use color and spatial upsampler to pro-
duce high resolution colorized image. Also, hybrid trans-
former architectures are also proposed in colorization. (Ji
et al. 2022) used transformer-based encoder and color mem-
ory decoder to obtain contextual semantics and color diver-
sity, (Huang, Zhao, and Liao 2022) uses BERT-style hybrid
transformer that utilizes input masked color tokens to restore
the masked tokens via training on grayscale image. Also,
(Yun et al. 2022) uses the Vision Transformer as a backbone
and effectively upsampling the image through the local sta-
bilizing layer. However, despite the superior performance of
the transformer-based colorization method, it is still redun-
dant for user-interactive applications.

Adaptive Inference

Pruning methods have demonstrated considerable perfor-
mance in reducing model redundancy, while enhancing in-
ference speed. In contrast to static pruning methods, recent
adaptive inference methods adaptively perform pruning op-
erations depending on input images. BlockDrop (Wu et al.
2018) and SkipNet (Wang et al. 2018) explored the dynamic
method to skip blocks and layers, respectively. Several meth-
ods (Gao et al. 2018; Veit and Belongie 2018) were proposed
to skip computations of unimportant channels. For example,
FBS (Gao et al. 2018) dynamically amplifies and suppresses
output channels. By skipping computations from unimpor-
tant channels, it is possible to use the previous layer’s fea-
ture to predict the saliency of the output channel. Moreover,
adaptive inference method has demonstrated acceleration in
transformer-based models (Chen, Fan, and Panda 2021; Li
et al. 2021; Wang et al. 2021; Yu et al. 2022; Yin et al.
2022; Meng et al. 2022). A-ViT (Yin et al. 2022) and Dy-
namicViT (Rao et al. 2021) reduced the redundancy of the
model by removing redundant image patches of each input,
while AdaViT removed image patches, attention heads, and
blocks. However, compared to reducing the redundancy of
the layer, reducing the redundancy of image patches and at-
tention heads possesses the overhead of inefficient path in-
dexing and weight-copying. These restrain the actual accel-
eration. For real-time interactive colorization, we dynami-
cally remove the unimportant attention and MLP layer in
the transformer, and further improve the inference speed,
compared to the previous transformer-based colorization ap-
proaches.

Method

In this work, we propose A-ColViT, an adaptive user-
interactive colorization framework to reduce the compu-
tational cost of vision transformers to be effectively used
for real-time colorization applications. Given an input sam-
ple, A-ColViT is trained to satisfy the reconstruct error, and
obtain desirable computational cost at the same time. An
overview of our method is presented in Fig. 1.

Preliminaries. Vision transformer has demonstrated out-
standing performance in computer vision tasks such as im-
age classification. Thus, it has been actively adopted for
colorization (Kumar, Weissenborn, and Kalchbrenner 2021;
Huang, Zhao, and Liao 2022; Ji et al. 2022; Yun et al. 2022;
Yin et al. 2021) task as well. Hence, we also adopt vision
transformer architecture to propagate user hints.

Given a colored train image Ic ∈ R
H×W×3, we con-

vert the colored image to grayscale image, Ig ∈ R
H×W×1,

by changing RGB color space to CIELab color space and
extracting perceptual lightness value L∗. We generate user
hints Ihint ∈ R

H×W×3 through masking the non-hint re-
gions with 0 for a, b channels from L*a*b scale. The non-
hint regions of a, b is combined with Ihint ∈ R

H×W×3

to compose Ihint where hint-regions have values of 1 and
non-hint regions have values of 0. Since the users cannot di-
rectly interact in propagating hints during training, hints are
uniformly sampled following 2-D gaussian distribution. The
color variation of user hint is selected via taking the average



Decision

Network

Policy Token

Keep

[Keep, Skip]

...

Skip

La
ye

rN
o

rm

M
u

lti
-H

ea
d


A
tt

en
ti

o
n

La
ye

rN
o

rm

M
LP+ +

La
ye

rN
o

rm

M
u

lti
-H

ea
d


A
tt

en
ti

o
n

+ +Grayscale Image

User Hints

Transformer Encoder Transformer Encoder

Colorized Image

Policy Token

Decision

Network

P
ix

el

Sh

u
ffl

in
g

Pa
tc

h
 E

m
b

ed
d

in
g

Keep

[Keep, Keep]

Keep

La
ye

rN
o

rm

M
LP

Figure 1: Overview of our proposed colorization pipeline. The main idea of our work is to use a decision network that uses a
policy token in making a binary decision to dynamically skip or retain the attention layer in ViT. And, the output of transformer
blocks are upsampled via pixel shuffling.

color values for each channel in L*a*b color space adjacent
to the hint region. Hence, the final input X ∈ R

H×W×4 is
obtained by concatenating grayscale image Ig and hint input
Ihint. This final input is divided into patches Xp that is fed
into transformer encoder. The equation of obtained input X
is defined as follows:

X = Ig ⊕ Ihint, (1)

where ⊕ is channel-wise concatenation.
Since the release of Transformers (Vaswani et al.

2017), numerous efforts have emphasized building different
attention-based token mixer. However, in addition to hav-
ing computational cost quadratic to the number of tokens
to mix, self-attention and spatial MLPs bring significantly
more parameters with long sequences, allowing them to only
process hundreds of tokens. As a result, Poolformer (Yu
et al. 2022) substitutes this attention-based token mixer with
a straightforward operator, pooling, and takes advantage of
pooling by adopting a hierarchical structure similar to con-
ventional CNNs (He et al. 2016; Krizhevsky, Sutskever, and
Hinton 2017; Simonyan and Zisserman 2014) and Trans-
formers (Liu et al. 2021; Wang et al. 2021). Without any
learnable parameters, the pooling requires a computational
complexity linear to the sequence length, and the module ag-
gregates each token with its nearby token features. As patch
embedding of ViT, the model gets a sequence of embedded
tokens Z ∈ RN×C as input I , where N and C denote the se-
quence length and embedding dimension, respectively. Also,
the policy token Z ∈ R1×C is propagated as an input to
the decision network and is included in Z. The input of the
model can be demonstrated as follows:

Z = [Zpolicy;Z1;Z2; ...;ZN ] + Epos (2)

The single-head attention containing query, key, and value
projected from the same input can be computed as below:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

Multi-head self-attention (MSA) concatenates the output
from numerous single-head attentions and projects it with

another parameter matrix to focus attention more efficiently
on various representation subspaces:

headi,l = Attn(ZlW
Q
i,l, ZlW

K
i,l , ZlW

V
i,l) (4)

MSA(Zl) = Concat(head1,l, ..., headH,l)W
O
l , (5)

where Zl stands for the input at the lth block and

W
Q
i,l,W

K
i,l ,W

V
i,l, and WO

l are the parameter matrices in the

ith attention head of the lth transformer block. The output
of the MSA is fed into FFN, a two-layer MLP, to create the
output of the transformer block Zl+1. Residual connections
are applied to MSA and FFN as follows:

Z ′

l = MSA(Zl) + Zl, Zl+1 = FFN(Z ′

l) + Z ′

l (6)

Using the class token from the previous transformer block
(Z0

L) as inputs, a linear layer generates the final prediction.
By rearranging a (H/P, W/P, C×P2) feature map into the
shape of (H, W, C), we use pixel shuffling, an upsampling
technique, to create a full-resolution image.

Decision Network. The decision network at lth trans-
former block consists of two linear layers with parameters
Wl to produce usage policies for attention layer selection
and FFN layer selection. Given the input to lth block Zl ,
the usage policy matrices for this block is computed as fol-
lows:

ml = WlZl (7)

where ml denote the usage policies of attention and FFN
layers. ml is passed forward to a sigmoid function, indicat-
ing the probability of keeping the corresponding attention
and FFN layers, respectively. Thus, Ml to make decisions by
sampling from ml. In addition, since the binary decisions are
non-differentiable, we adopt a Gumbel-Softmax trick (Mad-
dison, Mnih, and Teh 2016) to enable backpropagation.

Layer Selection. When a transformer layer is redundant,
that layer can be skipped. In this paper, we dynamically skip
the attention layer and the FFN layer according to the input
sample. The operation according to skip can be expressed as
follows:



Table 1: Summary of our results on three benchmark datasets. For fair comparison, we compare tiny model of iColoriT with
A-ColViT-T. And, we compare GFLOPs, PSNR@ 1, 5, 10, 50 and LPIPS@1, 5, 10, 50, respectively. The performance results
worse than the baseline value are colored in blue, while those performing better than the baseline are colored in red.

Dataset Method GFLOPs PSNR@1 ↑ LPIPS@1 ↓ PSNR@5 ↑ LPIPS@5 ↓ PSNR@10 ↑ LPIPS@10 ↓ PSNR@50 ↑ LPIPS@50 ↓

ImageNet-ctest10k

iColoriT-T 1.43 25.69 0.113 27.79 0.093 28.82 0.085 31.08 0.068

A-ColViT-T-0.9 1.32 (7.7%↓) 25.83 (0.14↑) 0.111 (0.002↓) 27.93 (0.14↑) 0.091 (0.002↓) 28.96 (0.14↑) 0.083 (0.002↓) 31.23 (0.15↑) 0.067 (0.001↓)

A-ColViT-T-0.7 1.07 (25.2%↓) 25.77 (0.08↑) 0.111 (0.002↓) 27.86 (0.07↑) 0.092 (0.000−) 28.90 (0.08↑) 0.083 (0.002↓) 31.16 (0.08↑) 0.067 (0.001↓)

A-ColViT-T-0.5 0.79 (44.8%↓) 25.66 (0.03↓) 0.114 (0.001↑) 27.75 (0.04↓) 0.094 (0.002↑) 28.76 (0.06↓) 0.086 (0.001↑) 31.00 (0.08↓) 0.069 (0.001↑)

A-ColViT-T-0.3 0.46 (67.8%↓) 25.34 (0.35↓) 0.120 (0.006↑) 27.42 (0.37↓) 0.098 (0.005↑) 28.43 (0.39↓) 0.090 (0.005↑) 30.67 (0.41↓) 0.072 (0.004↑)

Oxford 102flowers

iColoriT-T 1.43 20.31 0.213 23.31 0.151 24.67 0.130 27.30 0.095

A-ColViT-T-0.9 1.32 (7.7%↓) 20.49 (0.18↑) 0.205 (0.008↓) 23.53 (0.22↑) 0.145 (0.006↓) 24.89 (0.22↑) 0.124 (0.006↓) 27.50 (0.20↑) 0.091 (0.004↓)

A-ColViT-T-0.7 1.09 (23.8↓) 20.44 (0.13↑) 0.208 (0.005↓) 23.44 (0.13↑) 0.148 (0.003↓) 24.80 (0.13↑) 0.126 (0.004↓) 27.40 (0.10↑) 0.093 (0.002↓)

A-ColViT-T-0.5 0.86 (39.9%↓) 20.31 (0.00−) 0.213 (0.000−) 23.28 (0.03↓) 0.151 (0.000−) 24.64 (0.03↓) 0.129 (0.001↑) 27.24 (0.06↓) 0.095 (0.00−)

A-ColViT-T-0.3 0.49 (65.7%↓) 20.06 (0.25↓) 0.225 (0.012↑) 22.87 (0.44↓) 0.162 (0.002↑) 24.19 (0.48↓) 0.139 (0.009↑) 26.80 (0.50↓) 0.103 (0.008↑)

CUB-200

iColoriT-T 1.43 26.64 0.121 28.74 0.010 29.60 0.090 31.60 0.073

A-ColViT-T-0.9 1.32 (7.7%↓) 26.77 (0.13↑) 0.118 (0.003↓) 28.86 (0.12↑) 0.096 (0.004↓) 29.71 (0.11↑) 0.088 (0.002↓) 31.74 (0.14↑) 0.071 (0.002↓)

A-ColViT-T-0.7 1.07 (25.2%↓) 26.72 (0.08↑) 0.120 (0.001↓) 28.80 (0.06↑) 0.097 (0.003↓) 29.66 (0.06↑) 0.089 (0.001↓) 31.67 (0.07↑) 0.072 (0.001↓)

A-ColViT-T-0.5 0.79 (44.8%↓) 26.62 (0.02↓) 0.121 (0.000−) 28.68 (0.06↓) 0.099 (0.001↓) 29.52 (0.08↓) 0.090 (0.000−) 31.50 (0.10↓) 0.074 (0.001↑)

A-ColViT-T-0.3 0.46 (67.8%↓) 26.30 (0.34↓) 0.129 (0.008↑) 28.40 (0.34↓) 0.103 (0.003↑) 29.23 (0.37↓) 0.094 (0.004↑) 31.17 (0.43↓) 0.078 (0.005↑)

Z
′

l = Ml,0 ·Attention(Zl) + Zl

Z
′

l+1 = Ml,1 · FFN(Z
′

l ) + Z
′

l

(8)

Loss function. Our goal is to optimize overall huber
loss (Huber 1992) and the sparsity loss to train a vision
transformer with an ideal target computational cost and min-
imal performance drop at the same time. The loss function
of our A-ColViT can be defined as follows:

Lsparsity = (
1

L

L∑

l=1

Ml − β)2 (9)

L = Lhuber + Lsparsity, (10)

where L, Lhuber, and Lsparsity represent the number of
transformer layers, huber loss, and sparsity loss. Also, the
hyperparameters β is target computation budgets with values
between 0 and 1, which can adjust the remaining ratio of
layers.

Experiments

Experimental settings. In training, we utilized a simi-
lar configuration with iColoriT (Yun et al. 2022) for equi-
table comparison. First, we resized our images to 224× 224
with 512 batches and trained for 2.5M iterations. Second, we
use patch size of P = 16 with sequence length N of 196.
Moreover, we use AdamW optimizer (Loshchilov and Hut-
ter 2017) with 0.0001 learning rate followed, a weight decay
0.05 and a cosine annealing scheduler (Loshchilov and Hut-
ter 2016) for 25 epochs.

Baselines. We compare the performance of our model
with iColoriT, a recent interactive colorization method based
on Vision Transformer. Moreover, we compare our model
with iColoriT-T, where T refers to tiny.

Datasets. To extensively explore model scalability, we
utilize ILSVRC-2012 ImageNet dataset with 1.3M images
and 1, 000 classes for training. We used 10,000 images
for test set (also referred as ImageNet ctest10k). ImageNet
ctest10k (Larsson, Maire, and Shakhnarovich 2016) is a sub-
set of ImageNet that is used as a benchmark for colorization
tasks. To further evaluate the performance of our model, we
also selected CUB-200 dataset (Welinder et al. 2010) and
Oxford 102 Flower dataset (Nilsback and Zisserman 2008)
with 5, 794 test images of 200 classes and 1, 000 flower im-
ages of 102 classes, respectively.

Evaluation metric. To quantitatively evaluate the per-
formance of our method, we measure and compare PSNR
and learned perception image patch similarity LPIPS (Zhang
et al. 2018) between the ground truth and the output image.
PSNR of an image is defined as the ratio of an image’s max-
imum achievable power to the power of corrupting noise.
The higher the PSNR value means that the two images are
alike (and share similar colors). LPIPS calculates percep-
tual similarity between two images like human perception.
The lower the LPIPS value demonstrates that the two images
are perceptual similar. Also, to evaluate and compare model
efficiency, we mention then number of giga floating-point
operations (GFLOPs).

Quantitative Results. In Table 1, we provide quantita-
tive results in three datasets: ImageNet-ctest10k, Oxford
102flowers, and CUB-200, respectively. Moreover, with re-
gards to the naming convention of our model, the decimal
points X in our model name, A-ColViT-T-X, refers to the
percentage of layers left (i.e. A-ColViT-T-0.7 has 30% of
layers pruned). When we reduce GFLOPs to 0.3 (67.8%
less than iColoriT-T), there is a slight performance degrada-
tion in PSNR@1 of 1.4% concerning iColoriT-T. In contrast,
when we decrease our GFLOPs up to 0.5 or 50% reduction,
there is almost no performance degradation compared to the
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Figure 2: Qualitative visualization result of iColoriT-T, A-ColViT-T-0.3, A-ColViT-T-0.5 and ground truth image. In each row,
the first square shows the number of hints used. We show the results on 1, 5, 10, and 50 number of user hints, respectively. As
shown, A-ColViT-T-0.5 can generate images equivalent to iColoriT-T, despite the decreased GFLOPs.

Table 2: Comparison between actual acceleration (Through-
put and Speed up) and theoretical acceleration (GFLOPs) of
iColoriT-T and A-ColViT-T.

Methods
Throughput

(imgs/sec)
Speed up GFLOPs

iColoriT-T 23.6 - 1.43

A-ColViT-T-0.3 (Ours) 50.8 2.2× 0.46

A-ColViT-T-0.5 (Ours) 40.0 1.7× 0.79

baseline iColoriT-T. Moreover, for A-ColViT-T-0.9 and A-
ColViT-T-0.7, the PSNR@1 value increases by 0.5% and
0.3%, respectively. This demonstrates that despite the reduc-
tion of GFLOPs, there is a performance increase.

Qualitative Results. We provide the visualization of the
qualitative results in Fig. 2. Given a test grayscale image,
our goal is to reproduce a realistic colorized image that is
equivalent to the ground truth. The results illustrate that
the colorized output of ours does not differ with iColoriT
with respect to the quality of the produced result. When we
reduce GFLOPs significantly, A-ColViT-T-0.3 depicts less
color in the output image. In comparison with A-ColViT-T-
0.5, it shows analogous colors with the baseline. Moreover,
our model is capable of colorizing detailed regions when ad-
equate number of hints are provided as shown in the last row
of Table 2. For some examples, A-ColViT-T-0.5 was able to
colorize better. In the second row of Fig. 2, A-ColViT-T-0.5
was able to colorize detail regions (i.e. bird beak, bird body)
in comparison with iColoriT.

Discussion

Allocation of computational resources. To validate the
result whether we have adjusted the computational cost ap-
propriately for difficulty of each input, we visualize example
images that take the least and most computation in Fig. 3.
For least computed images, the images do not show di-
verse colors and illustrate only a single object (i.e. airplane,
birds). Furthermore, background of least computed images
are mostly white background or colors with less light inten-
sity. For images that take most computation, multiple objects
appear in a single image. For example, in the first two rows,
images of British Royal Guard and people riding camels
have multiple mixed objects with various colors. Flower im-
ages on the fourth row and the carpet tile on the third row
have distinct colors with details. This makes the model more
challenging resulting in taking more computation compared
to the easy images.

Actual acceleration. Table. 2 demonstrates the Through-
put and GFLOPs of iColoriT-T and A-ColViT-T. Through-
put indicates the number of processed images per sec-
ond, measured by the CPU. To provide a fair comparison,
we experimented with only single thread. A-ColViT-T-0.3
achieved 50.8 images per second with only 0.46 of GFLOPs,
which is 1.7× faster than the comparison method iColoriT-
T. In particular, A-ColViT-T-0.5 outperforms iColoriT-T
by 2.2× faster, showing 40.0 throughput with only 0.79
GFLOPs, while requiring only a few performance drops.
In conclusion, our method reduced theoretical FLOPs while
achieving actual acceleration.
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Figure 3: A set of sample images that require the least and
most computation.

Conclusions

In this work, we present A-ColViT, an adaptive vision trans-
former for real-time interactive colorization. Our approach
adaptively prunes vision transformer layers based on the dif-
ficulty of input samples. To achieve the efficiency and real-
time colorization requirements, we use a trainable decision
network to determine which specific layers to skip or retain
in the transformer architecture. With the improved efficiency
of the network obtained from the decision network, our ex-
periments demonstrate that we are able to reduce the com-
putational cost, while achieving and maintaining the SOTA
performance.
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Appendix - More Examples 1
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Figure 4: Additional qualitative result of iColoriT-T, A-ColViT-T-0.3, A-ColViT-T-0.5 and ground truth image. In each row, the
first square shows the number of hints used. We show the results on 1, 5, 10, and 50 number of user hints, respectively.
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Appendix - More Examples 2

Figure 5: Additional qualitative result of real historical data. This data is a custom dataset that contains historical situations in
korea.


