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Abstract

Compressing neural network architectures is important to al-
low the deployment of models to embedded or mobile devices,
and pruning and quantization are the major approaches to
compress neural networks nowadays. Both methods benefit
when compression parameters are selected specifically for
each layer. Finding good combinations of compression param-
eters, so-called compression policies, is hard as the problem
spans an exponentially large search space. Effective compres-
sion policies consider the influence of the specific hardware
architecture on the used compression methods. We propose
an algorithmic framework called Galen”'? to search such
policies using reinforcement learning utilizing pruning and
quantization, thus providing automatic compression for neu-
ral networks. Contrary to other approaches we use inference
latency measured on the target hardware device as an optimiza-
tion goal. With that, the framework supports the compression
of models specific to a given hardware target. We validate our
approach using three different reinforcement learning agents
for pruning, quantization and joint pruning and quantization.
Besides proving the functionality of our approach we were
able to compress a ResNet18 for CIFAR-10, on an embed-
ded ARM processor, to 20% of the original inference latency
without significant loss of accuracy. Moreover, we can demon-
strate that a joint search and compression using pruning and
quantization is superior to an individual search for policies
using a single compression method.

Introduction

While the success of machine learning press deep neural
networks forward to various problem domains, the deploy-
ment on resource-constrained embedded or mobile devices
is limited due to its high compute demands. This contradicts
the practical application of deep learning approaches to real-
world problems, as inference with such models does not pro-
vide acceptable latencies, or is too costly in terms of energy

“These authors contributed equally.

"Publicly available: https://github.com/UniHD-CEG/galen

Galen (129 C.E. — c. 216 C.E.) was a Greek physician and
philosopher who is regarded as a pioneer in surgery. He valued
observation, experimentation and analysis to advance his studies.
Similar to Galen, the present work observes sensitivity to guide
compression, and includes experimentation to assess hardware costs
before re-assessing the strategy of network alteration (surgery).

demand for battery-powered devices. Well-known compres-
sion methods like pruning or quantization can improve the
hardware efficiency significantly (He, Zhang, and Sun 2017;
Jacob et al. 2018). However, applying the same compression
parameters—specifying sparsity for pruning and precision
for quantization—to all layers of a network yields suboptimal
results, since the computational complexity and sensitivity
differs highly between layers. Therefore, a mixed compres-
sion policy specifying layer-specific compression parameters
is required to achieve near-optimal compression results while
maintaining top accuracy. Searching compression parameters
per layer spans exponentially large search spaces prohibiting
the use of structured search methods. Applying pruning and
quantization at the same time makes the problem even more
complex due to reciprocal effects. The search by a human ex-
pert applying heuristics gained from experience mismatches
the scalability demands and is insufficient due to the limited
availability of such experts.

Various approaches were proposed to find compression
policies automatically for either pruning or quantization.
Some select layer policies in a greedy fashion to fulfill a
constraint (Yang et al. 2018), while others propose differen-
tial solutions by adding additional losses (Yu et al. 2022).
Specifically for quantization, there are multiple approaches
for selecting proper compression parameters by computing
layer sensitivity metrics (Cai et al. 2020; Dong et al. 2019,
2020). Also heuristic search or evolutionary algorithms were
prosed to find optimal solutions (Liu et al. 2020; Lin et al.
2020). Besides searching for a separate policy per method
some approaches are searching jointly for a combined com-
pression policy (Yang et al. 2020; Tung and Mori 2018; Wang,
Lu, and Blankevoort 2020; Wang et al. 2020). As we will
see, particularly interesting in the context of this work are
approaches using reinforcement learning to predict compres-
sion policies (Wang et al. 2019; He et al. 2019; Lou et al.
2020; Elthakeb et al. 2020), with in particular AMC (He
et al. 2019) for pruning and HAQ (Wang et al. 2019) for
quantization demonstrating promising results. Both process
the models in a layer-wise fashion and predict the compres-
sion parameters as continuous actions using a reinforcement
agent implementing the Deep Deterministic Policy Gradient
(DDPG) algorithm (Lillicrap et al. 2019).

While reinforcement learning has demonstrated promising
results for either searching pruning or quantization policies,



there is no prior work yet on joint searches based on re-
inforcement learning. A joint search is essential to cover
reciprocal effects of applying quantization and pruning to
the same model. The introduction of a huge pruning sparsity
might, for example, prohibit quantization to a layer weight,
although strong quantization could yield better accuracy. A
joint search approach could consider such effects, while exe-
cuting different policy searches separately might miss it.

Additionally, the reward for reinforcement learning is usu-
ally based on rather abstract metrics, instead of probing
an actual targeted hardware instance for feedback in the
form of latency, for instance. Most related works use ab-
stract metrics such as MACs (Multiply-Accumulate Opera-
tions) or BOPs (Bit OPerations) (He et al. 2019; Wang, Lu,
and Blankevoort 2020), however, common abstract metrics
do not directly translate to latency. Often the specific hard-
ware architecture, through complex interaction of caches,
memory bandwidths, etc. interacting with the parallel execu-
tion model, leads to a non-trivial correlation between metric
and latency (Klein et al. 2021; Sze et al. 2020). In some
cases a metric like BOPs, indicate a high speedup, while
the used hardware did not support quantized data types or
the overhead of using quantization methods—Ilike bit-serial
approaches (Umuroglu et al. 2019)—is much larger then the
benefit. Other works use lookup tables with latencies mea-
sured for specific layer configurations upfront (Wang et al.
2019; Yang et al. 2018; Wang et al. 2020). By definition, these
lookup tables can only hold results for different configura-
tions of individual layers. Still, the size and effort for creating
such a lookup table for a joint search problem is impractical
due to the increased number of options per layer. In addi-
tion, we can imagine that lookup tables could fail estimating
latencies properly due to effects of layer combinations.

With this work, we propose an algorithm called ”Galen”
for a joint search of quantization and pruning policies, which
also considers a reward based on actual target hardware la-
tency. The algorithm consists of a reinforcement learning
agent to predict policies, which will be tested on a target
device to integrate latency as a cost factor into the reward
function. Therefore, Galen finds hardware-specific policies
and enables fast deployment to specific hardware devices. We
show exemplary its applicability to arbitrary trained image
classification models to automatically search compression
policies using pruning and quantization. In particular, this
work makes the following contributions:

1. A generic algorithm (”Galen”) and implementation for
joint pruning and quantization based on reinforcement
learning, supporting arbitrary models for image classifica-
tion.

2. Integration of direct hardware feedback by measuring
model architecture latency on the target device, using
hardware-specific code generation with support for sparse
and quantized models.

3. Proposals for three different reinforcement agents for
pruning, quantization, and joint pruning and quantization.

4. Support for quantization based on integer 8-bit and flexi-
ble bit widths, applicable interchangeably within a model,
and conceptionally extendible to other data types.

Our algorithm has its conceptual foundation in the ideas pro-
posed by AMC (He et al. 2019) and HAQ (Wang et al. 2019).
This work will elaborate on the conceptual construction of the
algorithm and the different agents proposed. Within the eval-
uation, we will show why a joint hardware-specific approach
using reinforcement learning is valuable.

Related Work

Denoted as AutoML or Automatic Compression various ap-
proaches for searching pruning or quantization policies au-
tomatically were proposed, which mainly differ in solving
the underlying optimization problem. Related work covers
relatively simple greedy algorithms (NetAdapt (Yang et al.
2018)), reinforcement learning (AMC (He et al. 2019)), sim-
ulated annealing (AutoCompress (Liu et al. 2020)), evolu-
tionary algorithms (Automatic Structure Search (Lin et al.
2020)), among others. Besides NetAdapt all presented algo-
rithms use an indirect metric as cost measurement within the
optimization problem, e.g. the number of MACs, FLOPs or
parameters. Most approaches to search quantization policies
with a specific precision per layer are either based on a met-
ric measuring the sensitivity of a layer for quantization (Cai
et al. 2020; Dong et al. 2019, 2020) or use a reinforcement
learning agent to predict policies (Lou et al. 2020; Wang
et al. 2019; Elthakeb et al. 2020). Also, it has been shown
that the combination of both, pruning and quantization is
very effective to achieve high compression ratios with low
accuracy loss (Han, Mao, and Dally 2016). In this regard,
joint search has been considered in the form of Bayesian
optimization (CLIP-Q (Tung and Mori 2018)), gradient opti-
mization (Wang, Lu, and Blankevoort 2020), and constrained
optimization (Yang et al. 2020). Some of these approaches
report results based on BOPs (Bit OPerations (Baskin et al.
2021)), but notably none of them measure the resulting la-
tency or speedup.

In more detail, AMC (He et al. 2019) supports policies for
structured pruning, based on input channels, or unstructured
pruning by removing individual connections. However, the
latter lacks speedup on real hardware and is less relevant in
the context of this work. HAQ (Wang et al. 2019) produces
mixed-precision policies covering bit widths from 2 to 8 bits
for weights and activations of supported layers, thus always
compresses to at least 8 bits. Both algorithms follow the same
schema and process a model layer-by-layer. A layer-specific
state is constructed and passed to a reinforcement agent which
predicts the compression action for the layer. The actions of
both approaches are continuous, and a DDPG agent consist-
ing of an actor and a critic network is used. Subsequently, the
actions are mapped to discrete compression parameters, pre-
cisely channel count or bit width. After parsing all layers, the
complete policy is validated by compressing the model and
testing the achieved accuracy. While HAQ conducts a short
retraining before validating the performance, AMC instead
reconstructs weight values by using stored input and output
data of each layer.

AMC and HAQ mainly use the validation error as a reward,
thus the agent is penalized based on the loss of accuracy intro-
duced by a predicted policy. As this provides no incentive to
compress the model, both approaches ensure compression by



enforcing a hard cost constraint, defined as a ratio of the cost
metric: while AMC uses the number of FLOPs or parameters
as a cost metric, HAQ uses the inference latency estimated
by using a lookup table.

Algorithmic Concept: A Generic
Reinforcement Learning Compression
Framework

This work proposes a general method, which automatically
predicts a policy of Compression Method Parameters (CMPs)
leading to a near optimal solution, balancing accuracy and
latency. In this work the compression methods are applied
layer-wise, therefore, we define the compression policy P
compressing a model M to M p as,

P e {reR¥r; € 0,1]}"*M, (1)

where L is the number of layers of the model, M is the num-
ber of used compression methods and r is a vector of K con-
tinuous compression parameters. While most of the CMPs—
like amount of pruned channels or bit width of weights or
activations—are discrete values, the policy uses normalized,
continuous values. While evaluating a policy by applying a
compression the continuous policy P is mapped to the hard-
ware and implementation-dependent CMPs. This allows a
unbiased policy search, independent of the magnitude and
granularity of the parameters. However, some methods re-
quire a individual decision, e.g. to use a specific data type,
for those, we weaken the definition and use a dictionary type
holding status flags per method to represent the policy.

With that, searching for the best compression policy P that
fulfills a target compression rate ¢ could be formulated as a
constrained optimization problem

P = argmax acc (Mp (0;2),y),
P (2)
s.t. cost (Mp) < ¢+ cost (M),

where the output predicted by the compressed model
Mp (0;z) for input 2 and trained weights 6, is validated
with ground truth labels y computing the accuracy acc (-)
constrained by the selectable cost (-) metric.

As cost metric, we use the inference latency of the com-
pressed model. The following presents the conceptual basics
of our algorithm which utilizes reinforcement learning agents
to predict a policy P.

Algorithmic Schema

We distinguish between episodes, the outer loop with hard-
ware evaluation, and time steps, the inner loop predicting
policies for all layers. Considering a reinforcement learning
setup, an episode represents a single match of a game, in our
case this means predicting a complete compression policy P,
for a model M by using an agent. Besides predicting a policy
P,, an episode comprises the validation of the found policy
and the optimization of the used agent, illustrated in Figure 1.
The validation result V,, of this compressed model Mp, con-
sists of accuracy, MACs, BOPs and measured latency and is
subsequently used to optimize the agent, which completes
the episode.
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Figure 1: Episode overview: predict, apply and validate a
compression policy P, iteratively to optimize the agent.
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Figure 2: Overview of the policy prediction cycle. With each
step the agent predicts parameters for a single layer.

Figure 2 explains the iterative policy prediction cycle. With
every time step ¢ the algorithm determines the CMPs for all
applied compression methods of a single layer. Starting with
a reference policy P,, which is the initial no-compression
policy, the algorithm iterates through the model layer by layer,
creating a partial policy P, ;, which is used to compress the
model obtaining Mp, ,. The compressed model is required
to extract the model features X; which include metrics like
channel count or MACs, and sensitivity results per layer.
Sensitivity results represent a metric measuring the effect of
applying a compression method to a single layer. The agent,
using the custom state s, created using the model features
X, predicts continuous actions a; € RY, which then are
mapped to the continuous compression parameters r. Finally,
the parameters are mapped to the discrete, implementation
and hardware-specific CMPs.



Compression Methods

Pruning We implement structured pruning by removing
output channels and corresponding weights for convolution
layers. To achieve the given target channel count, which is
predicted by the agent, we use the ¢; strategy (Li et al. 2017)
to identify the channels with least magnitude weights and
remove them. For linear layers, the pruning is implemented
analogously by removing output features.

Pruning a layer changes the shape of the output tensor,
thus subsequent layers and operators have to be adjusted ac-
cordingly. Besides the simple case, that the input count of
the directly following layer has to be changed, this could
yield complex dependencies, especially for network archi-
tectures with recurrent or residual connections. We automat-
ically detect such dependencies within our algorithm using
a specialized library’ and do not accept the prediction of
pruning parameters for affected layers.

Quantization We provide multiple quantization options for
applicable layers. Generally, our algorithm supports mixed-
precision quantization with independent bit widths between 1
and 8 bits for activation and weights (MIX), fixed-point 8-bit
integer quantization INTS8, and no quantization, i.e. single-
precision floating point (FP32). The support for mixed preci-
sion quantization differs among hardware targets and is even
dependent on concrete layer configurations. We implement a
check for supported quantization actions for each layer and
accept only supported quantization actions, analogous to the
detection of pruning dependencies.

For accuracy validation during the search we implement
fake quantization (Gholami et al. 2021). For quantization of
weight and activation tensors we use uniform quantization
with an asymmetric range. We use dynamic range calibration
by selecting minimum and maximum per channel. Formally,
mapping value 7 to its quantized value

Q (r) = max (—n,min (n, [s-r — z])), 3)

with n = 20 — 1, scale s = —"—— and offset z =

|8 - Tpmin| + 2271 While b is the target bit width and @,
and x,,,, defines the range extracted from the tensor.

Continuous Actions and Discretization

The compression policy P is defined using continuous com-
pression parameters and the action spaces of all our agents
are continuous. We follow the reasoning presented by AMC
and HAQ), that a continuous action space allows more fine-
grained control and avoids an explosion of the action space
while maintaining the order of actions by the resulting com-
pression ratio. Besides this, we profit from the abstraction of
layer-specific details like the concrete channel count. Thus,
the agent predicts an abstract compression ratio per compres-
sion method and the action space does not differ per layer.
To apply compression to a model the policy P has to be
mapped to discrete CMPs—channel count for pruning and
bit widths for quantization. Thereby we apply an inverse
mapping,
d,(r)=1-7r)-v]+1, 4)

3Torch-Pruning: https://github.com/VainF/Torch-Pruning

where d,, maps the compression ratio r to a discrete value
using reference v. In the case of pruning, the reference is the
original channel count of the layer, and for mixed precision
quantization, the reference is configurable but at maximum 8
bits. Because the hardware implementation of some mixed-
precision quantization modes require multiples of 8 or 32,
we additionally implement the option to round the pruning
channel count to a multiple of a fixed value, and thus allow a
combined usage of pruning and quantization.

Sensitivity Analysis

To provide some hints to the agent about the effect of com-
pressing a layer we include the results of a sensitivity analy-
sis within the model features X;. The used sensitivity metric
measures the impact of applying a compression method with
a defined compression parameter to a single layer. Thus, it
reports how sensitive the overall result of the model is to
prune or quantize layer [. We reuse the idea presented by
ZeroQ for quantization (Cai et al. 2020) and generalize it
for a wide range of compression policies. Subsequently, we
measure the distortion introduced by applying compression
policy P as

N
0P) = 1 32 Dir(Mp(B:)|M(E: 7)) )

j=1

where Dy, is the Kullback-Leibler divergence measuring
the difference of the probability distributions produced by the
compressed model compared to the original model. Thereby,
x; represents one of N samples of the original training data.
To measure the impact of applying a specific CMP configura-
tion to a single layer, we reuse the reference policy P, and
set corresponding parameters only. Per CMP and layer, a pre-
defined number of sample policies is created. The complete
sensitivity analysis is done upfront the search for all layers.

Direct Metric: Hardware Latency

We use inference latency measured on a specific hardware
device as cost metric to optimize for, because latency as a
direct metric includes effects specific to the used hardware
architecture which could not be characterized by common
abstract metrics like MACs or BOPs. Moreover, the sup-
port for quantization is heavily hardware-dependent, some
platforms do not support advanced quantization techniques
at all. But even if the techniques are supported, the gained
speedup strongly depends on the used implementation and
operators (Klein et al. 2021; Sze et al. 2020). By measuring
the latency on target devices our algorithm guarantees that
the found compression policy could be used in practice and
that the found policy is specifically optimized for the concrete
device architecture.

We use Apache TVM (Chen et al. 2018) for measuring
latency on embedded devices. TVM is an open-source deep
learning compiler that allows to automatically compile, op-
timize and deploy models to various heterogeneous hard-
ware targets. This allows us to cross-compile the model dur-
ing search and instruct an embedded device to perform a
latency measurement using the compilation result. For in-
ference latency testing, we disabled the usage of pre-tuned



parameters within the TVM compile step and do not use
auto-tuning (Chen et al. 2019). For the experiments in this
work we used an ARM Cortex A-72 processor, in place of
a huge class of embedded CPUs. TVM supports convolu-
tion and fully-connected bit-serial operators optimized for
ARM CPUs with mixed precision (Umuroglu et al. 2019;
Cowan et al. 2018, 2020). However, the operator implemen-
tation yields some constraints to the configuration of the
compressed layer: For convolution layers the number of in-
put channels must be a full multiple of 32, for output channels
a multiple of 8, the spatial output dimension must be at least
2 and depth-wise convolutions are not supported. For linear
layers, the output feature count must be a full multiple of 8.
The mixed-precision compression is restricted to compati-
ble layers. Therefore, for joint agents the channel count for
pruning has to be rounded to a multiple of 32.

Reward Function

We make use of the absolute reward function proposed by
Bender et al. (2020) for the related problem of neural ar-
chitecture search using reinforcement learning. The reward
function adjusted for our algorithm is therefore,

Trmp
C: TM

-1

(6)

where accpy,, is the accuracy of the compressed model, 7Ty
and Tz, the measured latency of the original and com-
pressed model, respectively. The hyperparameter 8 < 0 is
the cost exponent and controls how strong the reward should
be reduced when not meeting the target compression rate c.
We calculate the reward per episode once for the found policy
P, and assign each time step within the episode the same
reward.

We also tried different reward functions, such as hard ex-
ponential reward (Tan et al. 2019), but had similar problems
as discussed by Bender et al. (2020).

r (P) = accprp —&-5‘

Proposed Agents

We propose three agents to predict compression policies for:
quantization, pruning and a joint compression. While all
agents share a common concept and are based on the same
DDPG algorithm, the state space s; and action space a;, the
feature-extraction and the mapping of actions to a policy P
is action-specific. Once per episode the compression policy
is validated and the calculated reward is shared over all ap-
plied transitions. To reduce the variance, the rewards within
the sampled transition batch for optimization are normalized
using a moving average. The states of all agents are normal-
ized by standardization and centralization using mean and
variance of the features before feeding them into the agent
networks. As both are unknown we use running estimations
updated using seen states, comparable to a batch norm layer.
When starting a new search the agents choose the actions ran-
domly instead of using the actor network for a configurable
number of episodes. These warm-up episodes are required
to fill the replay buffers with enough transitions before exe-
cuting the first optimization of the agent. To add exploration
noise we sample each action from a truncated normal,

ag ~ Nirune (H(Stwu)a 0,2’ 0, 1) ) @)

where 11(s¢|0*) is the original prediction of the actor network
of the corresponding agent. The used noise derivation o de-
cays exponentially, therefore the exploration noise decreases
each episode. With that, the first episodes of a search assem-
ble the exploration phase which smoothly blends into the
exploitation phase of the algorithm. We use an initial noise
derivation of 0 = (0.5 and a decay rate of 0.95.

The actor and critic networks used for all agents consist
of two hidden linear layers with 400 and 300 features. All
actions predicted by the agents are limited to [0, 1] by ap-
plying a Sigmoid activation function to the output layers of
the actor networks. We set the discount factor y within the
Bellman equation for Q-learning to 0.99, the factor controls
the horizon of the expected reward calculation. For optimiza-
tion of the actor and critic networks we use the Adam opti-
mizer (Kingma and Ba 2015) with a learning rate of 0.0001
for the actor network and 0.001 for the critic network. For
both we use #; = 0.9 and By = 0.999. The batch size for
the agent optimization is 128. We use a replay-buffer-size
of 2000, but since the number of transitions per episode is
agent and model dependent, the real number of episodes in
the buffer differs.

Quantization Implementation Details

Selection of Quantization Method We support three dif-
ferent quantization methods, which can be applied layer-wise.
We select the quantization method by applying thresholds
based on the predicted actions. If activation a, or weight
a,, action exceeds threshold ¢,,,;, = 0.5 MIX quantization,
otherwise, if one of them exceeds t;,,:s = 0.2 INT8 quantiza-
tion, otherwise FP32 is used. For layers which do not support
mixed precision quantization the agent selects the INT8 op-
tion instead. The mixed precision quantization requires con-
tinuous compression parameters, thus we scale the actions a,
and a,, to the compression parameters 7, 7, € [0, 1] with:

r; = max (min (W,O) ,1) . (8)

Exploration Range The implementation supports limiting
the maximum bit widths for the MIX quantization option.
For ResNetI18 we validated that bit widths with more than
6 bits lead to slower inference times for the used bit-serial
operation compared to the INT8 option.

Additionally, we discovered that the TVM compile time
spikes drastically when bit-serial operations with high bit
widths are used. Therefore, we limit the maximum bit width
for the MIX option to 6 bits for all our experiments to avoid
unnecessary long exploration phases and shorten the search
time significantly.

Experiments

We evaluated the proposed algorithm using the three agents
with a ResNet18 (He et al. 2016) trained on the CIFAR-10
dataset (Krizhevsky, Hinton et al. 2009). We split a custom
validation set from the train data set and use it for accuracy
validation and sensitivity analysis. For all experiments, we
used a Raspberry Pi Model 4B with an ARM Cortex A-72
processor as hardware target to measure inference latency.



Table 1: Compressed model performance per agent with tar-
get compression ratio ¢

Method c | MACs BOPs |Latency|Accuracy
Uncompressed 4.75-10'°|4.86 - 10*3| 330ms| 93.0%
Pruning Agent 1.42-10"(1.45- 10" 98ms| 93.0%
Quantization A.|0.3|4.75 - 10'°|8.23 - 10| 98ms| 92.5%
Joint Agent 4.35-10'°|9.42- 10| 99ms| 93.2%
Pruning Agent 9.24-10° [9.45-10"%| 66ms| 92.4%
Quantization A.|0.2|4.75 - 10'°{4.01 - 10| 57ms| 45.0%
Joint Agent 2.82-10%°(6.74 - 10| 64ms| 92.8%

For the quantization agent, we ran 310 episodes per exper-
iment and 410 episodes for the pruning and the joint agent.
We included 10 warm-up episodes at the beginning of each
search and used for all experiments in the reward function a
cost exponent of 3=-3.0. Reported accuracies are test accu-
racies of the compressed and for 30 epochs retrained models.

Comparing Agent Policies

The goal of the experiment is to validate the basic function-
ality of the algorithm and the three agents. Therefore, we
evaluated policy searches using all three agents with various
target compression rates.

General Performance Table 1 shows, that comparing the
performance of the three different agents with a compression
ratio of ¢=0.3, all agents are successful at compressing the
model and reducing the latency to the aimed 30 % of the
original model. This illustrates that every single agent is
suitable to find optimized compression policies using the
available methods with optimized, layer-specific compression
ratios. While for less challenging target compression rates,
all agents can find optimized compression policies reaching
target latency without notable loss in accuracy, in extreme
conditions (e.g. Table 1, c=0.2) the quantization agent is
forced to use extreme small bit widths to reach the target
compression ratio, which leads to a huge loss in accuracy. We
suspect that for such extreme 1-bit quantization, if possible
at all, advanced methods are required to sustain accuracy.

While the pruning agent reduces the amount of MACs
most and the quantization agent is the most effective in min-
imizing BOPs, the joint agent balances both compression
methods. Since the desired latency reduction is a preset pa-
rameter, the agents try to use all resources in this indirect
budget to preserve accuracy. The joint agent can exploit quan-
tization and pruning combined and can achieve the latency
reduction with less aggressive usage of both methods with
best conservation of accuracy.

Policy Analysis To compare the policies of the differ-
ent agents, we used a less challenging compression rate of
¢ = 0.3, such that the observed policies produce comparable
accuracies. The pruning agent seems to prune all layers—
except for the first—almost equally, illustrated in Figure 3a,
with a minor tendency to prune latter layers more. The other
exceptional type of layers, the gray-colored layers, depend
on other layers and could not be pruned independently.
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Figure 3: Predicted compression policies P of the pruning,
quantization and joint agent. With a target compression rate
of ¢=0.3. Bar labels indicate remaining channels for pruning,
and bit width for activations and weights, respectively.

The quantization agent in contrast, as illustrated in Fig-
ure 3b, varies the quantization bit widths more across all
layers. The usage of INT8 quantization for the first and last
layer is induced by the constraints for using the MIX quanti-
zation and hence no explicit decision of the agent. A slight
trend towards smaller bit widths for first and last layers is de-
tectable, at the same time layers in the middle of the network
have the largest bit widths. The agent quantizes weights much
stronger than activations, which is also a common pattern in
hand-tuned quantized models, since often the activations are
more sensitive to quantization noise (Zhou et al. 2016; Zhu
et al. 2017; Schindler et al. 2018).

The joint agent follows a mixed pattern. Figure 3¢ shows
that it quantizes activations up to 5 bits for activations and
weights up to 4 bits, overall less aggressive than the quantiza-
tion agent. INT8 quantization is again only used for layers
without stronger alternatives. In contrast to the pruning agent
this joint agent does not prune the first layers and uses prun-
ing, more limited, probably also due to the restriction of
pruning only multiples of 32 which are rather large parts of
the channel-wise small first layers. Due to the computational
savings quantization, less pruning is required and vice versa.
Overall the joint agent has a larger action space and use this
freedom for a more balanced compression.

Variation of Target Compression Rate c

We do not enforce the target compression rate ¢ by overriding
or clipping actions like related approaches (He et al. 2019;
Wang et al. 2019). Instead, we include the target within the
reward function. Within the following experiment, we vary

Quantization Bits
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Figure 4: Comparing the accuracy and relative latency of the
agents with various target compression rates c.

the target compression rate and test thereby if the agents
are capable to predict policies matching the given resource
budget.

Figure 4 shows for each tested compression ratio ¢ €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7} the achieved relative latency
and accuracy. For the most challenging compression ratios the
quantization agent is forced to use extreme small bit widths,
finally failing to achieve the target latency, accompanied by a
huge loss in accuracy. This demonstrates that if we exceed
the limit to which a model can be compressed with a specific
compression method, the agent finally fails to find a useful
policy, overwhelmed by balancing too demanding latency
and accuracy constraints. For the other two agents, a decrease
in accuracy with increasing compression rate is observable
too, however, the results are still in an acceptable range.

Despite the extreme quantization case, the policies found
are observed within 5 percent points of the target latency.
This demonstrates that the control of the resource budget by
the reward function is quite effective. The hyperparameter
(B even provides the possibility to relax or strengthen the
constraint. In addition, we consider policies with latencies
smaller than the given target as acceptable, although the used
reward also penalizes these. The results show that an auto-
matic compression search using measured inference latency
is suitable.

The joint search resulted in the best accuracy for small
compression rate targets. Although the difference in accu-
racy compared to the pruning agent is quite small, for these
compression targets a superiority is detectable. Combined
with the sharp decrease for the quantization agent this illus-
trates the value of a combined search using both compression
methods. A detailed analysis of the policies predicted by the
agents underlines that the joint agent constantly applies less
restrictive compression using both methods in a balanced
manner.

Other ablation studies include a demonstration that a con-
current joint policy search is balancing better than a sequen-
tial series of pruning and quantization searches, or variations
of such sequential approaches. Furthermore, another study
shows that the sensitivity information enables the agents to
exploit heterogeneity in compression for the different layers

better, thereby compressing the most resilient layers most. In
particular considering scalable model architectures, one can
assume an increasing benefit of the sensitivity information.
Short summaries of these ablation studies can be found in the
appendix.

Summary and Outlook

We introduced an algorithmic concept called ”Galen” for
the automatic compression of neural networks using rein-
forcement learning, consisting of an automated framework
and three proposed agents for quantization, pruning, and
joint compression, respectively. Contrary to other approaches,
Galen validates the compressed model by deploying and
benchmarking on a real-world embedded system, using code
generation with support for sparse and quantized operators.
With that, we use real inference latency as our optimization
target within the search algorithm, and predict compression
policies specific to the selected target and existing hardware
constraints. While the algorithm itself is generic and extend-
able to further compression methods, we support pruning and
quantization, and notably joint pruning and quantization—
with support for different quantization types. Thereby, we
demonstrate that it is sufficient to specify the inference-
latency budget as constraint within the reward function.

For the first results of ResNet18 on CIFAR-10 we can
report nearly perfect compression: Using our joint agent we
compressed the model to 20 % of the original latency while
achieving an accuracy of 92.8 %. For compression to 30 % of
the original latency, we fully conserved the original accuracy.
With that, we also infer the obvious next steps, that validation
of the algorithm and the proposed agents on more complex
data sets and various model architectures is required.

By comparing the joint agent to the pruning and quan-
tization agent, we can replicate the known result that the
combination of both compression methods is very effective
to achieve high compression rates with top accuracies (Han,
Mao, and Dally 2016). The detailed analysis of predicted
compression policies of the different agents leads to the in-
sight, that a joint agent—guided by a sensitivity metric—can
balance the impact of compression over different layers and
compression methods.

Overall these are the first results and proof of concept, with
great opportunities for further extensions. Very promising
and unique would be the integration of detailed, layer-wise
hardware feedback. Performance counters—providing for
example the cache miss rate—could be evaluated to guide
the agents, not only by sensitivity, but also by hardware per-
formance metrics.
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