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Abstract

Current state-of-the-art object detection models are charac-
terized by very large output manifolds due to the number of
possible locations and sizes of objects in an image. This leads
to their outputs being sparse. We propose a novel adversarial
algorithm that leverages this output sparsity to propose more
efficient adversarial attacks by limiting attacks to sensitive re-
gions. We identify sensitive regions of an image as those that
stimulate the greatest network activations and optimize adver-
sarial perturbations to those regions only. Our Focused Adver-
sarial Attacks (FA) algorithm is consistently more effective
than other adversarial methods under the same perturbation
constraints. We evaluate FA on the COCO 2017 and Pascal
VOC 2007 detection datasets against a variety of SOTA ob-
ject detector models and show that FA outperforms all popu-
lar and SOTA adversarial attacks against object detectors.

Introduction
Recent research in machine learning led to the discovery of
adversarial examples, which are data points carefully tai-
lored to induce errors in ML models. Many adversarial at-
tacks likely take place every day without being detected
or leaving traces. The introduction of Generative Adversar-
ial Networks (GANs) (Goodfellow et al. 2014) gave rise to
Deepfakes, synthetic videos, pictures, and voice recordings,
which pose big threats such as fake news and crafted mate-
rial. Detectors have been developed to distinguish real from
synthetic images (Nguyen et al. 2019), but these have also
been shown to be vulnerable to adversarial examples (Car-
lini and Farid 2020). Adversarial examples can also be used
to promote user privacy, as shown in (Shan et al. 2020) and
(Cilloni et al. 2022) for unauthorized facial recognition, and
(Xiao et al. 2020) to prevent data inference from a model’s
parameters.

Most adversarial examples focus on fooling Object De-
tection models. Object Detection is the task of localizing and
classifying objects in images. Most object detection models
nowadays use deep CNNs and learn feature mappings that
can be post-processed to produce detections. Region Pro-
posal Networks (RPNs) first find regions in the image where
objects may reside and then try to predict a label for each
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region, possibly rejecting any proposals. This approach al-
lows the model to be flexible in predicting large, small, or
numerous objects but requires significant computations. Ex-
amples of this architecture are RetinaNet (Lin et al. 2020),
and Faster R-CNN (Ren et al. 2015). Single Shot Detectors
(SSDs), on the other hand, lay out sparse and dense grids of
anchor points over images. Then, for each point in each grid,
a number of probability distributions over classes are com-
puted. This feature map is processed with non-max suppres-
sion to discard overlapping and non-confident predictions.
While faster, this method is less accurate than RPNs. An ex-
ample of this architecture is SSD (Liu et al. 2016). SSDs and
RPNs both output very large, sparsely activated feature maps
that induce unnecessary computation in finding adversarial
examples. By using only a subset of the outputs, we show
how adversarial examples can be more effectively generated.

Fooling an Object Detection model with an adversar-
ial example is defined as an adversarial attack. Adversarial
attacks are algorithms that generate adversarial examples,
crafted data points that are classified by neural networks dif-
ferently than how they would be classified by a human. Ad-
versarial attacks, given a real data point and an ML model,
try to solve two problems at the same time: maximize the
error of the model, and minimize the change introduced in
the data point. The taxonomy of adversarial attacks identi-
fies as targeted attacks those whose goal is to fool a model
into predicting a certain target; otherwise, an attack is un-
targeted. White- and black-box methods refer to whether, in
the threat model, attackers have internal access to the victim
network or not. The most recent adversarial methods against
object detectors are either gradient-based, such as DAG (Xie
et al. 2017), or GAN-based, such as UEA (Wei et al. 2019)
and MI (Liang, Wei, and Cao 2021). While gradient methods
are faster, GAN-based ones are consistently more effective,
and MI (Liang, Wei, and Cao 2021) is the current state-of-
the-art.

Understanding adversarial attacks is the first step toward
building defense mechanisms. In this paper, we propose a
novel gradient-based adversarial algorithm that takes advan-
tage of the semantics of the feature maps that models learn.
This method is simple but fundamental as it exploits the
very nature of object detectors as sparse networks. Isolat-
ing and backtracking only highly activated output neurons,
we are able to determine which pixels in an image contribute



most significantly to detections; we refer to their ensemble
as sensitive regions. Constraining adversarial perturbations
to sensitive regions only, cloaks are not only less perceptible
but also more effective and equally fast or faster than com-
parable methods. We evaluate our strategy using four pop-
ular object detectors: RetinaNet, SSD300, Faster R-CNN,
and DETR; and two datasets: COCO 2017 and Pascal VOC
2007. Results show that our algorithm is computationally
more efficient and, at the same time, more effective than all
other gradient or GAN-based attacks, including MI (Liang,
Wei, and Cao 2021).

Related Work
One of the early works in adversarial attacks against object
detectors is the Dense Adversary Generator (DAG) by Xie
et al. (Xie et al. 2017). It proposes to apply gradient-based
attacks previously used against classification models in the
context of object detectors and semantic segmentation. Re-
sults show that the accuracy (mean Average Precision) of
object detection can be reduced by DAG from ≈ 70% to be-
low 20%. Adversarial examples generated in white-box set-
tings are also shown to transfer to the same detection models
trained on different data. However, transferability to differ-
ent models is low.

(Gu et al. 2021) propose Gradient Shielding, a gradient-
based attack for image classifiers that targets sensitive re-
gions of images. Such selection is made at the image level,
either manually (Interactive Gradient Shielding, IGS) or au-
tomatically (Automatic Gradient Shielding, AGS). IGS can
be visualized as a square-shaped adversarial perturbation ap-
plied to a square region of the image smaller than the image
itself; in other words, IGS ignores image borders. AGS au-
tomates this process by finding sensitive regions beforehand
and zeroing gradients for insensitive regions. Our work fol-
lows the same concept as gradient shielding, that is, applying
perturbations only to sensitive regions, however, with some
key differences: the loss function used in training the victim
model is irrelevant to us; the method to find sensitive regions
uses learned feature maps at the output level, instead of the
loss function’s gradient at the input level, which further op-
timizes the gradient calculation and leads to more strongly
activated gradients; we apply our method to object detectors,
which have much larger feature maps and complex gradi-
ents, instead of image classifiers.

(Wei et al. 2019) propose an adversarial algorithm that
uses GANs and a multi-scale attention feature loss to pro-
duce adversarial examples that can fool object detectors and
classifiers alike: Unified and Efficient Adversary (UEA).
This loss function is an ensemble of a high-level class loss
and a low-level feature loss and is used in training the GAN’s
generator. Their results show a drop in the accuracy of Faster
R-CNN and SSD300 on the Pascal VOC 2007 dataset from
70% to 5% and from 68% to 20%, respectively.

A drawback of UEA is the time it takes to train the gener-
ator. Given a train set of a few thousand samples, the gener-
ator requires several days of training time. More Impercep-
tible attacks (MI) (Liang, Wei, and Cao 2021) overcome this
problem by improving upon the generator used in UEA (Wei

et al. 2019) with an early stopping condition and a noise re-
duction step. Instead of iterating the generator a fixed num-
ber of times, an object detector is used to determine when an
example has become adversarial, and the generator is then
stopped. This ensures that generated samples are adversarial
and also minimally perturbed. The efficacy of attacks is at
least as good as that of (Wei et al. 2019), but at a fraction of
the time (8.4s to 1.8s).

The idea of focusing adversarial attacks toward specific
regions in images has been studied in the past. (Xu et al.
2019) propose structured attacks (StrAttack), an adversarial
algorithm to exploit semantic information in images to pro-
duce more targeted cloaks. The algorithm uses a small slid-
ing window that scans an image in search of key identify-
ing structures for objects. One of the motivations behind our
work (i.e., exploiting image semantics to produce stronger
attacks) is the same; however, the methodology and applica-
tion are largely different. While StrAttack uses a brute-force
approach to identify regions of interest, our algorithm uses
a tailored optimization function that identifies sensitive re-
gions and produces adversarial cloaks in a single operation.
Additionally, while StrAttack is focused on classification
problems, our interest is in object detectors, which present
vastly sparser feature maps than classifiers.

Adversarial Algorithm
This section introduces the algorithm to generate focused
adversarial examples. We first present some characteristics
of object detectors that motivate the design of focused ad-
versarial attacks. Then we introduce the algorithm itself, and
finally provide some considerations on its implementation.

Inspecting Object Detectors
Object detection neural networks process images and pro-
duce a feature output that contains spacial and semantic
information about any objects in the image. Unlike neural
network classifiers, which output as many features as there
are classes in the task they solve (typically with a softmax
layer), object detectors’ outputs are much larger.

As images may contain multiple objects, and the objects
may have different scales and be of different types, the fea-
ture map of object detectors must contain all such informa-
tion. Determining the class of an object is done in the same
manner a classifier makes predictions: generating a proba-
bility distribution over classes, which is a one-dimensional
vector. Objects have drastically different shapes, and this is
partially handled by having either multiple candidate bound-
ing boxes or dynamic bounding boxes. Minor improvements
to the fit of bounding boxes are also typically controlled
with a scale and offset adjustment. The spatial information
of detections is represented by a grid of candidate locations
in an image, and to support small and large-sized objects,
multiple grids are employed. Two of the most popular ob-
ject detectors, SSD(Liu et al. 2016) and RetinaNet(Lin et al.
2020), have around 8K and 100K candidate boxes, respec-
tively. Each candidate box has a related probability distribu-
tion over target classes, which we can assume to be COCO’s
80 classes. The total size of the output of these networks,



therefore, becomes enormous: 640K in SSD and 8M in Reti-
naNet.

The first consideration of traditional adversarial machine
learning methods is to be made with regard to the intuition
behind the effect of perturbations on predictions. In classi-
fication models, the gradient of the loss function, computed
with respect to the input and for a single output feature, in-
tuitively points perturbations in the direction to optimally
disrupt that feature or class. Similarly, considering a distri-
bution over target classes, perturbations can either confuse
a model by spreading the distribution or fool it by targeting
a feature other than the target. In object detectors, however,
it is unclear what gradient-based attacks actually do. Given
the high dimensionality of the detection features, targeted
attacks can incur in racing conditions where gradients with
respect to input pixels cancel each other out.

A second consideration is the characteristics of object de-
tectors’ feature mappings. The large outputs of detectors are
very sparsely activated. Significant detections usually occur
only in extremely small subsets of the feature maps, and
they become even fewer when they are filtered with a con-
fidence threshold. We explored this behavior by feeding an
example image to RetinaNet and studying its output map-
ping. 99.98% of the 8M outputs had activations at or be-
low 0.05, showing how sparse the features are. Fig.1a shows
the distribution of the 0.02% most activated outputs: only a
very small subset of this already minuscule set would actu-
ally contribute to candidate box selection algorithms at later
stages (which typically filter out activations below 0.5).

These insights are some of the motivations that led to our
design of Focused adversarial attacks. We show that adver-
sarial examples can be generated more efficiently and effec-
tively by filtering out non-contributing parts of the feature
maps of object detectors.

Problem Statement
Focused adversarial attacks are a form of gradient-based at-
tacks and therefore require white-box access to the victim
model. We assume that the attacker has access to the struc-
ture and the parameters of the model to attack and can repli-
cate the data pre-processing pipeline used in training. The
loss function used in training does not need to be known. Fi-
nally, it is assumed that the model outputs the feature map
of the activation of classes at various locations in the image.

In object detection tasks, images x ∈ X are sampled from
an unknown distribution X ⊂ [0, 1]H×W×3 and have corre-
sponding one-hot encoded labels y ∈ Y ⊂ [0, 1]A×C where
yij = 1 indicates that there is an instance of the object j
at the anchor location i (typically if j = 0 there is no ob-
ject or it is just background). An object detection model f
with parameters θ maps images onto a feature space Y as
ŷ = f(x; θ) ∈ Y , such that argmaxj ŷij is the predicted
class for location i, and its confidence is ŷij . The position i
in a vector ŷ tells the location of detection, and its coordi-
nates in an image can be calculated taking into consideration
the number of grids in the image, the size of each grid, and
the number of anchors. Focused adversarial attacks, how-
ever, being model-agnostic, are not concerned with the loca-

tion of detections, and therefore, the details of their imple-
mentation can be safely ignored.

We look at adversarial attacks as optimization problems.
Images are perturbed with a minimal mask δ ∈ [0, 1]H×W×3

with the goal of removing all confident predictions from a
model’s feature map. If all ŷij in a model’s output are low
enough (the exact value depends on model implementation
and choices in interpreting results), then the model will not
detect any object in an image. We indicate this upper bound
on ignored detections as c and define the optimization prob-
lem to find perturbations δ as follows:

find argmin
δ
∥x+ δ∥∞

s.t. ŷij ≤ c,∀ ŷij ∈ ŷ = f(x+ δ; θ)
(1)

Solution Algorithm

The novelty of our work is the method to find the pertur-
bation δ. We introduce a focus threshold t that determines
whether a feature of a model’s output map should be con-
sidered or not to compute the perturbations. The Focused
Activation FA is defined as the L1 norm of the vector of re-
gions of the feature map that exceed the threshold, and we
minimize it with respect to input images to determine the
perturbations δ. L and C are the numbers of locations in a
feature map and the classes in the detection task, and ϵ is the
modulator of the intensity of perturbations.

FA(ŷ, t) =

A∑
i

C∑
j

max(0, ŷij − t)

δ = ϵ ∗ sign (∇xFA(f(x; θ), t))

(2)

The motive behind filtering features is that the majority of
detection feature maps are noise. By focusing only on signif-
icantly activated regions of the maps, we are able to gener-
ate perturbations that specifically target sensitive regions in
an image. This drastically reduces the intensity of perturba-
tions in background regions of images and cloaks sensitive
regions more effectively. Figure 1b shows how in practice,
focused attacks are more targeted to sensitive image parts
for object detection.

Two issues with our loss function are that it is not dif-
ferentiable at ŷij − t = 0, and the derivative is 0 when
ŷij − t < 0, meaning there is no information available for
how to perform our update. We propose two viable solutions.
The first, FAP , takes advantage of the parallel processing
capabilities of modern processors to speed up computations,
and the second, FAI , uses indexing to reduce the volume
of operations to execute, which is particularly effective on
sparsely activated feature maps. For the remainder of this
paper, where the implementation details are not specified,
FAI is assumed to be the one used, because we found it
to be faster than FAP in our experiments. It is advisable to
always compare the performance of the two, as either one
could be faster depending on the size of feature maps, the
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(a) Histogram of the distribution of activa-
tions in the 99.98% most activated subset
of feature mappings. These are generated
by feeding sample 885 from COCO-2017-
val to RetinaNet.
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(b) Heatmap of the sensitive regions of images found by the focused adversarial examples
algorithm (bottom row), compared to the regions affected by standard PGD (middle row).
Heatmaps are found with five iterations for each algorithm, and all parameters are the same.

Figure 1: Investigative study of the activations found in Faster R-CNN’ feature map.

distribution of activations, and the hardware used.

focus(v, t) :=

{
1 if v > t

0 otherwise

FAP (ŷ, t) =

A∑
i

C∑
j

ŷij ∗ focus(ŷij , t)

(3)

sub(ŷ, t) := {ŷij : ŷij > t,∀ i, j : 0 ≤ i ≤ L, 0 ≤ j ≤ C}
FAI(ŷ, t) = ∥sub(ŷ, t)∥1

(4)
As with all gradient-based attacks, our focused adversar-

ial attacks can be executed in either a one-shot or iterative
fashion. Following is the iterative version of the one-shot at-
tack proposed earlier to compute adversarial perturbations.
For the remainder of this paper, this is the exact formulation
that we use in all experiments, with FA = FAI and varying
number of iteration steps and per-step magnitude ϵ. Follow-
ing is its definition, and the complete process is shown in
Algorithm 1.

δt+1 = ϵ ∗ sign (∇x+δ FA(f(x+ δ; θ), t)) (5)

Hyperparameter Analysis
In this section, we propose an exploration of three hyper-
parameters of our methods, which are the total intensity of
perturbations, the granularity of perturbation steps, and the
focusing threshold used in the Focused Activation function.
Finally, we study the performance gain of our focused ad-
versarial attacks in terms of processing speed.2

The experiments carried out in this section use a single
subset of 500 samples taken uniformly at random from the

2We constrain 0 ≤ x′ ≤ 255 for all dimensions so that these
remain valid color values.

Algorithm 1: Focused Adversarial Attack
Input: an image x; a model f with parameters θ whose

outputs lie on Y ⊂ [0, 1]A×C ; the perturbation radius ε ∈
[0, 1]; the number of iterative steps S; the focusing threshold
t.

Output: an adversarial image x′

1: function FOCUSED ATTACK(x, f, θ, ε, S, t)
2: ϵ← ε/S ▷ Apply ϵ for S steps
3: x′ ← x
4: for i← 1 . . . S do
5: δ ← sign (∇x′FAP (f(x

′; θ), t)) ▷
Implemented in Eq. 3

6: x′ ← x′ + ϵ ∗ δ ▷ Ensures ∥δ∥∞ ≤ ϵ, thus
∥x′ − x∥∞ ≤ ε1

7: end for
8: return x′

9: end function

COCO 2017 validation split and Faster R-CNN as the object
detection model. Efficacy is measured with the mean Av-
erage Precision (mAP) metric, and because our intent is to
hinder object detection models, lower precision values indi-
cate that a method is more effective.

Varying E-ball
The first series of experiments investigates how the intensity
of perturbations affects precision. Adversarial examples are
defined as x′ = x + δ, and δ is calculated by optimizing
the FA function. Considering using Projected Gradient De-
scent, the total perturbation δ found after T steps is found it-
eratively as the summation of T ϵ-magnitude, image-shaped
vectors. In order to produce perturbations comparable across
image samples and detection models used, we set an upper
bound on the L∞ norm of the total perturbation vector E ,



such that ∥δ∥∞ ≤ E . Given T iterations of the algorithm,
this constraint can be guaranteed by setting ϵ = E/T . The
E-ball of perturbations is, therefore, the space in which all
allowable perturbations reside.

Figure 2a shows how enlarging the E-ball of perturbations
makes attacks more effective. This behavior is expected as
larger perturbations are likely to be more effective, though
more noticeable. Results are presented for the Fast Gradi-
ent Sign Method (FGSM) and Projected Gradient Descent
(PGD), used as reference scores, while our attacks are FAS ,
with S being the number of iterations of the algorithm.

Perturbation Granularity
The second series of experiments on the hyperparameters
of focused adversarial attacks is concerned with the gran-
ularity of perturbations. Given a constant E-ball of adver-
sarial changes, a different number of iterative steps T can
lead to different results. The granularity of perturbations is,
therefore, the small epsilon that determines the magnitude of
each iteration’s perturbation, which is inversely proportional
to the number of steps as ϵ = E/T .

The precision of Faster R-CNN on adversarial examples
generated with varying steps is shown in Figure 2b. Given
a fairly large perturbation space of 0.1, the effectiveness of
attacks increases from 1 to 3 steps and then shows drasti-
cally diminishing returns for finer-grained perturbations. On
a similar note, when the perturbation space is more con-
strained, more than three steps also cause diminishing re-
turns, and more than five steps even show a decrease in per-
formance. It is, therefore, safe to assume that many but small
perturbations do not perform as well as few, larger ones.

Focusing Factor
The last series of experiments investigates the focusing
threshold used in focused adversarial attacks. This hyper-
parameter dictates which activations in a model’s feature
map should be considered and which should be excluded.
Higher values make the FA function consider very few
highly activated features, while lower values expand the
search space. As the activations we considered as expressed
as probability distributions, we use focus thresholding val-
ues in the range [0, 1). All experiments are run with a fixed
value of E = 0.02, and PGD attacks run for five iterations.

Figure 2c shows the decrease in precision associated with
different focus thresholds. The effectiveness of standard
FGSM and PGD attacks is constant because the threshold
does not affect them. PGD shows an increase in efficacy
for focus values around 0.5 and worse performance as the
threshold is raised or lowered. On the other hand, FGSM
performs best with high focus threshold values (0.8 to 0.9)
and actually exceeds PGD at a fraction of the computational
cost when the threshold is above 0.6.

Performance Analysis
The execution time of our method compared to standard
FGSM and PGD is presented in Table 1 for different focus
thresholding values. We run experiments on a single RTX
3070 GPU and consider only computational time, therefore

Table 1: Performance of adversarial attack methods. FGSM
and PGD show a single value because they are unaffected by
the focus threshold. The superscripts for the FA algorithm
indicate the number of iterations.

Focus Threshold
Attack 0.1 0.3 0.5 0.7 0.9

FGSM - - 139 ms - -
PGD - - 705 ms - -
FA1 139 ms 138 ms 137 ms 137 ms 136 ms
FA5 691 ms 683 ms 677 ms 675 ms 672 ms

excluding I/O and main memory to GPU data movement.
Results show that our focused adversarial attacks are either
equivalent or marginally faster than the other methods. PGD
performance is computed for five iterations of the algorithm.

Evaluation
We evaluate the performance gain of focused adversarial at-
tacks over FGSM and PGD in terms of efficacy and process-
ing speed, with a brief insight on final perturbation mag-
nitudes. Evaluations are carried out on two publicly avail-
able datasets: the full COCO 2017 validation split (Lin et al.
2014), and Pascal VOC 2007 test (Everingham et al. 2007).
These are publicly available datasets and have no personally
identifiable information or offensive images.

Models
Focused adversarial attacks can be carried out on any learned
machine-learning model. Though we suggest their use on
models that output probabilities or probability distributions,
with some tuning, any model is compatible. The experiments
included in this section are run on four SOTA object detec-
tion models: SSD300 (Liu et al. 2016), Faster R-CNN (Ren
et al. 2015), RetinaNet (Lin et al. 2020), and DETR (Car-
ion et al. 2020). All models are trained on the COCO 2017
dataset (Lin et al. 2014). We use Viet Nguyen’s implemen-
tation of SSD3003, to which we manually apply a softmax
layer to the outputs to produce probability distributions over
the classes available. For RetinaNet we use Yann Henon’s
implementation4 as is. Faster R-CNN is taken from torchvi-
sion5 and we tune its parameters to reduce the amount of de-
tections automatically filtered out. Finally, DETR is taken
from HuggingFace6 with all default parameters.

Effectiveness
Table 2 shows the mAP scores of the three models on the
COCO detection task for E-balls of radius 0.1 and 0.02. In
order to avoid overfitting the threshold to each particular
model to enhance results artificially, we use a constant fo-
cusing threshold t = 0.5. In the first column, we reproduce
the officially reported precision scores for each model and

3https://github.com/uvipen/SSD-pytorch/
4https://github.com/yhenon/pytorch-retinanet
5https://pytorch.org/vision/stable/models.html
6https://huggingface.co/docs/transformers/model doc/detr
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Figure 2: Effect of various hyperparameters on the precision of detections. The measure is mAP and the baseline for Faster
R-CNNis 0.469. FA methods’ footer is the number of iterations; the exponent is the focusing threshold.

then report the mAP scores for various attacks. While both
FGSM and PGD show a significant reduction in mAP, our
attacks perform drastically better, even at minimal E values.

Table 3 compares our focused attacks with other current
state-of-the-art adversarial attacks to fool object detectors.
To fool SSD300, we use a threshold T = 0.1, whereas, for
Faster R-CNN, we set it to T = 0.5; these values were ob-
tained with a 10-step hyperparameter search and are sup-
ported by the fact that SSD300 is more sparsely activated
than Faster R-CNN, and thresholding activations at 0.5 often
result in all activations being filtered out and the gradients
reducing to 0. DETR is, by design, the model with the least
sparse feature maps, which are orders of magnitude smaller
than in CNNs. The benefits of FAs are partially reduced by
the density of activations in DETR’s feature map. This can
be seen particularly with the smaller budget of E = 0.02.
This transformer network is therefore more robust than its
CNN counterparts, a result that follows the trends reported
in (Mahmood, Mahmood, and van Dijk 2021). Overall, Fo-
cused Attacks perform as well or better than other gradient-
based attacks and also provide equal or greater performance
to GAN-based methods without requiring training any sepa-
rate network.

Speed
The average adversarial attack execution times are reported
in Table 4, and result from using a single RTX 3070 GPU.
These times are not limited to the computational time but
also include I/O and main memory to GPU (and back) over-
head. As this overhead is equivalently present in each of the
three models, the results are comparable. In all cases, fo-
cused adversarial attacks are equally fast or faster than their
baseline counterparts.

Perceptibility
Focused adversarial attacks are constrained by a pixel-wise
upper bound E . Within the related E-ball, however, images
may be more or less perturbed across all their pixels. As
the L∞ distance metric is unable to capture this difference,
we also show the L1 perturbation magnitude across samples.

Given two pixels, their L1 distance tells how many values
they are apart from each other or their absolute difference.

For each image and its adversarial counterpart, x, x′ ∈
[0, 1]W×H×3, their mean L1 distance is ∥x−x′∥1

WHC . In contrast
with some works in the literature (Wang et al. 2021), we
use the mean of the norm because of two reasons: it is more
interpretable, and it is comparable across images of different
sizes.

Figure 4 shows the distribution of mean L1 norms of the
perturbation vectors generated with Faster R-CNN on the
COCO 2017 validation dataset, using FGSM or five itera-
tions of PGD. Our focused adversarial examples show a de-
crease of 10% in the intensity of perturbations applied to
images under the same hyperparameter settings. We believe
this is due to our perturbations being geared towards cloak-
ing sensitive parts of images while producing randomly-
oriented changes in nearby pixels, thus leading to subse-
quent cloaks often canceling the previous ones out. Visual
evidence of this behavior is found in the examples in Figure
3.

Additionally, Table 3 includes a comparison of the Peak
Signal to Noise Ratio (PSNR) of cloaked images across
methods. The higher this value, the more clear is the im-
age. Focused attacks perform better than baseline FGSM
and PGD attacks and equally well to GAN-based adversarial
methods.

Limitations and Future Works
In this paper we propose focused adversarial attacks, a
gradient-based adversarial machine learning attack to break
object detectors. By targeting adversarial perturbations only
towards sensitive regions of images, focused attacks are
more effective and also less visible than other state-of-the-
art methods, under the same constraints. We believe this al-
gorithm will be another important tool in ML practitioners’
arsenal to evaluate the vulnerability of ML models and de-
sign more robust systems.

Being gradient-based, focused attacks require white-box
access to the models they attack. While transferability has
been shown in a number of similar works, it is usually con-
strained to special cases or requires significantly invasive



Table 2: mean Average Precision (mAP) on the COCO 2017 val dataset for different E-ball radiuses.

E = 0.1 E = 0.02
Model Baseline FGSM PGD FA1 FA5 FGSM PGD FA1 FA5

RetinaNet 0.345 0.198 0.097 0.065 0.074 0.288 0.216 0.081 0.020
SSD300 0.244 0.113 0.102 0.056 0.043 0.188 0.168 0.088 0.076
F. R-CNN 0.469 0.162 0.067 0.078 0.028 0.262 0.161 0.122 0.181
DETR 0.421 0.189 0.124 0.153 0.062 0.321 0.301 0.238 0.235

Table 3: mAP resulting of adversarial attacks effectiveness on the Pascal VOC 2007 test set. PSNR metric is included to measure
visual perturbation; it is in the range [0, 100], and higher values are better. T is the threshold. DAG refers to (Xie et al. 2017),
UEA to (Wei et al. 2019), and MI to (Liang, Wei, and Cao 2021).

Gradient Attacks GAN Attacks
Model Baseline FGSM PGD FA1 FA5 DAG UEA MI

SSD300 0.686 0.564 0.531 0.200 0.048 0.640 0.200 0.160
F. R-CNN 0.778 0.431 0.388 0.204 0.056 0.050 0.050 0.060

PSNR 21 28 22 30 31 28 30
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Figure 3: Adversarial examples generated with standard PGD and with our method. Cloaks are computed with Faster R-CNN,
with 5 steps of gradient descent, and within an E-ball of radius E = 0.1 on a [0, 1] scale.

0 1 2 3 4 5 6 7
Mean L1 distance

0.0
0.2
0.4
0.6
0.8
1.0
1.2

De
ns

ity

FGSM
PGD
FAS = 1

FAS = 5

Figure 4: Distribution of L1 norms of the perturbation masks
generated with Faster R-CNN. The dashed lines indicate the
mean of each distribution. Values on the abscissa are average
pixel differences in the image and refer to a [0, 255] range.

Table 4: Average time to cloak a COCO image.

Model FGSM PGD FA1 FA5

RetinaNet 130 ms 645 ms 117 ms 585 ms
SSD300 95 ms 468 ms 34 ms 167 ms
F. R-CNN 183 ms 919 ms 171 ms 817 ms

perturbations to be effective. At the same time, ensemble
attacks have shown good transferability and our system can
easily be incorporated into an ensemble model.

In the future, we intend to optimize the implementation
of focused attacks to reduce the processing time per frame
down to at most 40ms. This will allow us to perform real-
time object cloaking in video feeds (at 24 FPS), and ideally



adapt the attacks to the physical world.
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