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Abstract

Second-order optimization uses curvature information about
the objective function, which can help in faster convergence.
However, such methods typically require expensive compu-
tation of the Hessian matrix, preventing their usage in a scal-
able way. The absence of efficient ways of computation drove
the most widely used methods to focus on first-order approx-
imations that do not capture the curvature information. In this
paper, we develop HesScale, a scalable approach to approx-
imating the diagonal of the Hessian matrix, to incorporate
second-order information in a computationally efficient man-
ner. We show that HesScale has the same computational com-
plexity as backpropagation. Our results on supervised classi-
fication show that HesScale achieves high approximation ac-
curacy, allowing for scalable and efficient second-order opti-
mization.1

Introduction

First-order optimization offers a cheap and efficient way of
performing local progress in optimization problems by us-
ing gradient information. However, their performance suf-
fers from instability or slow progress when used in ill-
conditioned landscapes. Such a problem is present because
first-order methods do not capture curvature information
which causes two interrelated issues. First, the updates in
first-order have incorrect units (Duchi et al. 2011), which
creates a scaling issue. Second, first-order methods lack
parameterization invariance (Martens 2020) in contrast to
second-order methods such as natural gradient (Amari 1998)
or Newton-Raphson methods. Therefore, some first-order
normalization methods were developed to address the in-
variance problem (Ba et al. 2016, Ioffe & Szegedy 2015,
Salimans & Kingma 2016). On the other hand, some recent
adaptive step-size methods try to alleviate the scaling issue
by using gradient information for first-order curvature ap-
proximation (Luo et al. 2019, Duchi et al. 2011, Zeiler 2012,
Reddi et al. 2018, Kingma & Ba 2015, Tran & Phong 2019,
Tieleman et al. 2012). Specifically, such methods use the
empirical Fisher diagonals heuristic by maintaining a mov-
ing average of the squared gradients to approximate the di-
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agonal of the Fisher information matrix. Despite the huge
adoption of such methods due to their scalability, they use
inaccurate approximations. Kunstner et al. (2019) showed
that the empirical Fisher does not generally capture curva-
ture information and might have undesirable effects. They
argued that the empirical Fisher approximates the Fisher
or the Hessian matrices only under strong assumptions that
are unlikely to be met in practice. Moreover, Wilson et al.
(2017) presented a counterexample where the adaptive step-
size methods are unable to reduce the error compared to non-
adaptive counterparts such as stochastic gradient descent.

Although second-order optimization can speed up the
training process by using the geometry of the landscape, its
adoption is minimal compared to first-order methods. The
exact natural gradient or Newton-Raphson methods require
the computation, storage, and inversion of the Fisher infor-
mation or the Hessian matrices, making them computation-
ally prohibitive in large-scale tasks. Accordingly, many pop-
ular second-order methods attempt to approximate less ex-
pensively. For example, a type of truncated-Newton method
called Hessian-free methods (Martens 2010) exploits the
fact that the Hessian-vector product is cheap (Bekas et al.
2007) and uses the iterative conjugate gradient method to
perform an update. However, such methods might require
many iterations per update or some tricks to achieve stabil-
ity, adding computational overhead (Martens & Sutskever
2011). Some variations try to approximate only the diago-
nals of the Hessian matrix using stochastic estimation with
matrix-free computations (Chapelle & Erhan 2011, Martens
et al. 2012, Yao et al. 2021). Other methods impose proba-
bilistic modeling assumptions and estimate a block diagonal
Fisher information matrix (Martens & Grosse 2015, Botev
et al. 2017). Such methods are invariant to reparametriza-
tion but are computationally expensive since they need to
perform matrix inversion for each block.

Deterministic diagonal approximations to the Hessian
(LeCun et al. 1990, Becker & Lecun 1989) provide some
curvature information and are efficient to compute. Specifi-
cally, they can be implemented to be as efficient as first-order
methods. We view this category of approximation as scal-
able second-order methods. In neural networks, curvature
backpropagation (Becker & Lecun 1989, Mizutani & Drey-
fus 2008) can be used to backpropagate the curvature vec-
tor. Although these methods show a promising direction for



scalable second-order optimization, the approximation qual-
ity is sometimes poor with objectives such as cross-entropy
(Martens et al. 2012). A scalable second-order method with
high quality approximation is still needed.

In this paper, we present HesScale, a high-quality approx-
imation method for the Hessian diagonals. Our method is
also scalable and has little memory requirement with linear
computational complexity while maintaining high approxi-
mation accuracy.

Background
In this section, we describe the Hessian matrix for neural
networks and some existing methods for estimating it. Gen-
erally, Hessian matrices can be computed for any scalar-
valued function that are twice differentiable. If f : Rn → R

is such a function, then for its argument ψ ∈ Rn, the Hes-
sian matrix H ∈ Rn×n of f with respect to ψ is given
by Hi,j = ∂2f(ψ)/∂ψi∂ψj . Here, the ith element of a vec-
tor v is denoted by vi, and the element at the ith row and
jth column of a matrix M is denoted by Mi,j . When the
need for computing the Hessian matrix arises for optimiza-
tion in deep learning, the function f is typically the objective
function, and the vector ψ is commonly the weight vector
of a neural network. Computing and storing an n × n ma-
trix, where n is the number of weights in a neural network,
is expensive. Therefore, many methods exist for approxi-
mating the Hessian matrix or parts of it with less memory
footprint, computational requirement, or both. A common
technique is to utilize the structure of the function to reduce
the computations needed. For example, assuming that con-
nections from a certain layer do not affect other layers in a
neural network allows one to approximate a block diagonal
Hessian. The computation further simplifies when we have
piece-wise linear activation functions (e.g., ReLU), which
result in a Generalized Gauss-Newton (GGN) (Schraudolph
2002) approximation that is equivalent to the block diagonal
Hessian matrix with linear activation functions. The GGN
matrix is more favored in second-order optimization since it
is positive semi-definite. However, computing a block diag-
onal matrix is still demanding.

Many approximation methods were developed to re-
duce the storage and computation requirements of the
GGN matrix. For example, under probabilistic modeling as-
sumptions, the Kronecker-factored Approximate Curvature
(KFAC) method (Martens & Grosse 2015) writes the GGN
matrixG as a Kronecker product of two matrices of smaller
sizes as: G = A ⊗B, where A = E[hh⊤], B = E[gg⊤],
h is the activation output vector, and g is the gradient of
the loss with respect to the activation input vector. The A
and B matrices can be estimated by Monte Carlo sampling
and an exponential moving average. KFAC is more effi-
cient when used in optimization since it requires inverting
only the small matrices using the Kronecker-product prop-
erty (A ⊗ B)−1 = A−1 ⊗ B−1. However, KFAC is still
expensive due to the storage of the block diagonal matri-
ces and computation of Kronecker product, which prevent it
from being used as a scalable method.

Computing the Hessian diagonals can provide some cur-
vature information with relatively less computation. How-

ever, it has been shown that the exact computation for diag-
onals of the Hessian typically has quadratic complexity with
the unlikely existence of algorithms that can compute the ex-
act diagonals with less than quadratic complexity (Martens
et al. 2012). Some stochastic methods provide a way to com-
pute unbiased estimates of the exact Hessian diagonals. For
example, the AdaHessian (Yao et al. 2021) algorithm uses
the Hutchinson’s estimator diag(H) = E[z ◦ (Hz)], where
z is a multivariate random variable with a Rademacher dis-
tribution and the expectation can be estimated using Monte
Carlo sampling with an exponential moving average. Sim-
ilarly, the GGN-MC method (Dangel et al. 2020) uses the
relationship between the Fisher information matrix and the
Hessian matrix under probabilistic modeling assumptions to
have an MC approximation of the diagonal of the GGN ma-
trix. Although these stochastic approximation methods are
scalable due to linear or O(n) computational and memory
complexity, they suffer from low approximation quality, im-
proving which requires many sampling and factors of addi-
tional computations.

The Proposed HesScale Method
In this section, we present our method for approximating the
diagonal of the Hessian at each layer in feed-forward net-
works, where a backpropagation rule is used to utilize the
Hessian of previous layers. We present the derivation of the
backpropagation rule for fully connected and convolutional
neural networks in supervised learning. Similar derivation
for fully connected networks with mean squared error is pre-
sented before (LeCun et al. 1990, Becker & Lecun 1989).
However, we use the exact diagonals of the Hessian matrix
at the last layer with some non-linear and non-element-wise
output activations such as softmax and show that it can still
be computed in linear computational complexity. We show
the derivation for Hessian diagonals for fully connected net-
works in the following.

We use the supervised classification setting where there is
a collection of data examples. These data examples are gen-
erated from some target function f∗ mapping the input x to
the output y, where the k-th input-output pair is (xk, yk). In
this task, the learner is required to predict the output class
y ∈ {1, 2, ...,m} given the input vector x ∈ Rd by esti-
mating the target function f∗. The performance is measured
with the cross-entropy loss, L(p, q) = −

∑m
i=1 pi log qi,

where p ∈ Rm is the vector of the target one-hot encoded
class and q ∈ Rm is the predicted output. The learner is
required to reduce the cross-entropy by matching the target
class.

Consider a neural network with L layers that outputs the
predicted output q. The neural network is parametrized by
the set of weights {W1, ...,WL}, where Wl is the weight
matrix at the l-th layer, and its element at the ith row and
the jth column is denoted by Wl,i,j . During learning, the
parameters of the neural network are changed to reduce the
loss. At each layer l, we get the activation output hl by ap-
plying the activation function σ to the activation input al:
hl = σ(al). We simplify notations by defining h0

.
= x.

The activation output hl is then multiplied by the weight
matrix Wl+1 of layer l + 1 to produce the next activation



input: al+1,i =
∑|hl|
j=1 Wl+1,i,jhl,j . We assume here that the

activation function is element-wise activation for all layers
except for the final layer L, where it becomes the softmax
function. The backpropagation equations for the described
network are given as follows Rumelhart et al. (1986):

∂L

∂al,i
=

|al+1|∑

k=1

∂L

∂al+1,k

∂al+1,k

∂hl,i

∂hl,i
∂al,i

= σ′(al,i)

|al+1|∑

k=1

∂L

∂al+1,k
Wl+1,k,i, (1)

∂L

∂Wl,i,j

=
∂L

∂al,i

∂al,i
∂Wl,i,j

=
∂L

∂al,i
hl−1,j . (2)

In the following, we write the equations for the exact Hes-
sian diagonals with respect to weights ∂2L/∂W 2

l,i,j , which re-
quires the calculation of ∂2L/∂a2l,i first:

∂2L

∂a2l,i
=

∂

∂al,i


σ′(al,i)

|al+1|∑

k=1

∂L

∂al+1,k
Wl+1,k,i




= σ′(al,i)

|al+1|∑

k=1

|al+1|∑

p=1

∂2L

∂al+1,k∂al+1,p

∂al+1,p

∂al,i
Wl+1,k,i

+ σ′′(al,i)

|al+1|∑

k=1

∂L

∂al+1,k
Wl+1,k,i

= σ′(al,i)
2

|al+1|∑

k=1

|al+1|∑

p=1

∂2L

∂al+1,k∂al+1,p
Wl+1,p,iWl+1,k,i

+ σ′′(al,i)

|al+1|∑

k=1

∂L

∂al+1,k
Wl+1,k,i,

∂2L

∂W 2
l,i,j

=
∂

∂Wl,i,j

(
∂L

∂al,i
hl−1,j

)
(3)

=
∂

∂al,i

(
∂L

∂al,i

)
∂al,i

∂Wl,i,j

hl−1,j =
∂2L

∂a2l,i
h2
l−1,j .

Since, the calculation of ∂2L/∂a2l,i depends on the off-
diagonal terms, the computation complexity becomes
quadratic. Following Becker and Lecun (1989), we approx-
imate the Hessian diagonals by ignoring the off-diagonal
terms, which leads to a backpropagation rule with lin-

ear computational complexity for our estimates ∂̂2L
∂W 2

l,i,j

and

∂̂2L
∂a2

l,i

:

∂̂2L

∂a2l,i

.
= σ′(al,i)

2

|al+1|∑

k=1

∂̂2L

∂a2l+1,k

W 2
l+1,k,i

+ σ′′(al,i)

|al+1|∑

k=1

∂L

∂al+1,k
Wl+1,k,i, (4)

∂̂2L

∂W 2
l,i,j

.
=

∂̂2L

∂a2l,i
h2
l−1,j . (5)

Algorithm 1: HesScale: Computing Hessian diagonals of a
neural network layer in classification

Require: Neural network f and a layer number l
Require: Input-output pair (x, y)

Require: First and second order information ∂̂L
∂al+1,i

and

∂̂2L
∂a2

l+1,i,j

, unless l = L

Set loss function L to cross-entropy loss
Compute preference vector aL ← f(x) and target one-
hot-encoded vector p← onehot(y)
Compute the predicted probability vector q ← σ(aL) us-
ing softmax function σ
Compute the error L(p, q)
if l = L then

Compute ∂L
∂aL
← q − p

Compute ∂L
∂WL

using Eq. 2

∂̂2L
∂a2

L

← q − q ◦ q

Compute ∂̂2L
∂W 2

L

using Eq. 5

else if l ̸= L then
Compute ∂L

∂al
and ∂L/∂Wl using Eq. 1 and Eq. 2

Compute ∂̂2L
∂a2

l

and ∂̂2L
∂W 2

l

using Eq. 4 and Eq. 5

end if

return ∂L
∂Wl

, ∂̂2L
∂W 2

l

, ∂L
∂al

, and ∂̂2L
∂a2

l

However, for the last layer, we use the exact Hessian diag-

onals ∂̂2L
∂a2

L,i

.
= ∂2L

∂a2
L,i

since it can be computed in O(n) for the

softmax activation function and the cross-entropy loss. More
precisely, the exact Hessian diagonals for cross-entropy loss
with softmax is simply q − q ◦ q, where q is the predicted
probability vector and ◦ denotes element-wise multiplica-
tion. We found empirically that this small change makes a
large difference in the approximation quality, as shown in
Fig. 1a. Hence, unlike Becker and Lecun (1989) who use a
Hessian diagonal approximation of the last layer by Eq. 4,
we use the exact values directly to achieve more approxi-
mation accuracy. We call this method for Hessian diagonal
approximation HesScale and provide its pseudocode for su-
pervised classification in Algorithm 1.

HesScale is not specific to cross-entropy loss as the ex-
act Hessian diagonals can be calculated in O(n) for some
other widely used loss functions as well. We show this prop-
erty for negative log-likelihood function with Gaussian and
softmax distributions in Appendix . The computations can
be reduced further using a linear approximation for the ac-
tivation functions (by dropping the second term in Eq. 4),
which corresponds to an approximation of the GGN matrix.
We call this variation of our method HesScaleGN.

Based on HesScale, we make a stable optimizer, which we
call AdaHesScale, given in Algorithm 2. We use the same
style introduced in Adam (Kingma & Ba 2015), using the
squared diagonal approximation instead of the squared gra-



dients to update the moving average. Moreover, we intro-
duce another optimizer based on HesScaleGN, which we
call AdaHesScaleGN.

Algorithm 2: AdaHesScale for optimization

Require: Neural network f with weights {W1, ...,WL}
and a dataset D

Require: Small number ϵ← 10−8

Require: Exponential decay rates β1, β2 ∈ [0, 1)
Require: step size α
Require: Initialize {W1, ...,WL}

Initialize time step t← 0.
for l in {L,L− 1, ..., 1} do
Ml ← 0; Vl ← 0

end for
for (x, y) in D do
t← t+ 1
rL+1 ← sL+1 ← ∅

for l in {L,L− 1, ..., 1} do
Fl,Sl, rl, sl ← HesScale(f,x, y, l, rl+1, sl+1).
Ml ← β1Ml + (1− β1)Fl
Vl ← β2Vl + (1− β2)S

2
l

M̂l ←Ml/(1− βt1)

V̂l ← Vl/(1− βt2)

Wl ←Wl − αM̂l ⊘ (V̂
◦ 1

2

l + ϵ)
end for

end for

Approximation Quality & Scalability of

HesScale

In this section, we evaluate HesScale for its approximation
quality and computational cost and compare it with other
methods. These measures constitute the criteria we look
for in scalable and efficient methods. For our experiments,
we implemented HesScale using the BackPack framework
(Dangel et al. 2020), which allows easy implementation of
backpropagation of statistics other than the gradient.

We start by studying the approximation quality of Hes-
sian diagonals compared to the true values. To measure the
approximation quality of the Hessian diagonals for different
methods, we use the L1 distance between the exact Hessian
diagonals and their approximations. Our task here is super-
vised classification, and data examples are randomly gener-
ated. We used a network of three hidden layers with tanh
activations, each containing 16 units. The network weights
and biases are initialized randomly. The network has six in-
puts and ten outputs. For each example pair, we compute the
exact Hessian diagonals for each layer and their approxima-
tions from each method. All layers’ errors are summed and
averaged over 1000 data examples for each method. In this
experiment, we used 40 different initializations for the net-
work weights, shown as colored dots in Fig. 1a. Each point
represents the summed error over network layers, averaged
over 1000 examples for each different initialization. In this
figure, we show the average error incurred by each method
normalized by the average error incurred by HesScale. Any

approximation that incurs an averaged error above 1 has a
worse approximation than HesScale, and any approximation
with an error less than 1 has a better approximation than
HesScale. Moreover, we show the layer-wise error for each
method in Fig. 1b.

(a) Normalized L
1 error with respect to HesScale

(b) Layer-wise L
1 error

Figure 1: The averaged error for each method is normalized
by the averaged error incurred by HesScale. We show 40
initialization points with the same colors across all methods.
The norm of the vector of Hessian diagonals |diag(H)| is
shown as a reference.

Different Hessian diagonal approximations are consid-
ered for comparison with HesScale. We included several
deterministic and stochastic approximations for the Hessian
diagonals. We also include the approximation of the Fisher
Information Matrix done by squaring the gradients and de-
noted by g2, which is highly adopted by many first-order
methods (e.g., Kingma and Ba, 2015). We compare HesS-
cale with three stochastic approximation methods: AdaHes-
sian (Yao et al. 2021), Kronecker-factored approximate cur-
vature (KFAC) (Martens & Grosse 2015), and the Monte-
Carlo (MC) estimate of the GGN matrix (GGN-MC) (Dan-
gel et al. 2020). We also compare HesScale with two deter-
ministic approximation methods: the diagonals of the exact
GGN matrix (Schraudolph 2002) (diag(G)) and the diag-



onal approximation by Becker and Lecun (1989) (BL89).
In KFAC, we extract the diagonals from the block diag-
onal matrix and show the approximation error averaged
over 1 MC sample (KFAC-MC1) and over 50 MC samples
(KFAC-MC50), both per each data example. Since AdaHes-
sian and GGN-MC are already diagonal approximations, we
use them directly and show the error with 1 MC sample
(GGN-MC1 & AdaHessian-MC1) and with 50 MC samples
(GGN-MC50 & AdaHessian-MC50).

HesScale provides a better approximation than the other
deterministic and stochastic methods. For stochastic meth-
ods, we use many MC samples to improve their approxi-
mation. However, their approximation quality is still poor.
Methods approximating the GGN diagonals do not cap-
ture the complete Hessian information since the GGN and
Hessian matrices are different when the activation func-
tions are not piece-wise linear. Although these methods ap-
proximate the GGN diagonals, their approximation is sig-
nificantly better than the AdaHessian approximation. And
among the methods for approximating the GGN diago-
nals, HesScaleGN performs the best and close to the exact
GGN diagonals. This experiment clearly shows that HesS-
cale achieves the best approximation quality compared to
other stochastic and deterministic approximation methods.

Next, we perform another experiment to evaluate the com-
putational cost of our optimizers. Our Hessian approxima-
tion methods and corresponding optimizers have linear com-
putational complexity, which can be seen from Eq. 4 and
Eq. 5. However, computing second-order information in op-
timizers still incurs extra computations compared to first-
order optimizers, which may impact how the total computa-
tions scale with the number of parameters. Hence, we com-
pare the computational cost of our optimizers with others for
various number of parameters. More specifically, we mea-
sure the update time of each optimizer, which is the time
needed to backpropagate first-order and second-order infor-
mation and update the parameters.

We designed two experiments to study the computational
cost of first-order and second-order optimizers. In the first
experiment, we used a neural network with a single hid-
den layer. The network has 64 inputs and 512 hidden units
with tanh activations. We study the increase in computa-
tional time when increasing the number of outputs expo-
nentially, which roughly doubles the number of parame-
ters. The set of values we use for the number of outputs
is {24, 25, 26, 27, 28, 29}. The results of this experiment are
shown in Fig. 2a. In the second experiment, we used a
neural network with multi-layers, each containing 512 hid-
den units with tanh activations. The network has 64 in-
puts and 100 outputs. We study the increase in computa-
tional time when increasing the number of layers exponen-
tially, which also roughly doubles the number of parame-
ters. The set of values we use for the number of layers is
{1, 2, 4, 8, 16, 32, 64, 128}. The results of this experiment
are shown in Fig. 2b. The points in Fig. 2a and Fig. 2b are
averaged over 30 updates. The standard errors of the means
of these points are smaller than the width of each line. On
average, we notice that the cost of AdaHessian, AdaHesS-
cale, and AdaHesScaleGN are three, two, and 1.25 times

the cost of Adam, respectively. It is clear that our methods
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(a) Increasing number of outputs in a neural network
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(b) Increasing number of layers in a neural network

Figure 2: The average computation time for each step of an
update is shown for different optimizers. The computed up-
date time is the time needed by each optimizer to backprop-
agate gradients or second-order information and to update
the parameters of the network. GGN overlaps with H in (a).

are among the most computationally efficient approximation
method for Hessian diagonals.

Empirical Performance of HesScale in

Optimization

In this section, we compare the performance of our
optimizers—AdaHesScale and AdaHesScaleGN—with
three second-order optimizers: BL89, GGNMC, and Ada-
Hessian. We also include comparisons to two first-order
methods: Adam and SGD. We exclude KFAC and the exact
diagonals of the GGN matrix from our comparisons due to
their prohibitive computations.

Our optimizers are evaluated in the supervised classifi-
cation problem with a series of experiments using differ-
ent architectures and three datasets: MNIST, CIFAR-10, and
CIFAR-100. Instead of attempting to achieve state-of-the-art
performance with specialized techniques and architectures,
we follow the DeepOBS benchmarking work (Schneider et
al. 2019) and compare the optimizers in their generic and
pristine form using relatively simple networks. It allows us
to perform a more fair comparison without extensively uti-
lizing specialized knowledge for a particular task. In the first
experiment, we use the MNIST-MLP task from DeepOBS.



The images are flattened and used as inputs to a network of
three fully connected layers (1000, 500, and 100 units) with
tanh activations. We train each method for 100 epochs with
a batch size of 128. We show the training plots in Fig. 6a
with their corresponding sensitivity plots in Appendix , Fig.
8a. In the second experiment, we use the CIFAR10-3C3D
task from the DeepOBS benchmarking tasks. The network
consists of three convolutional layers with tanh activations,
each followed by max pooling. After that, two fully con-
nected layers (512 and 256 units) with tanh activations are
used. We train each method for 100 epochs with a batch size
of 128. We show the training plots in Fig. 6b with their corre-
sponding sensitivity plots in Fig. 8b. In the third experiment,
we use the CIFAR100-3C-3D task from DeepOBS. The net-
work is the same as the one used in the second task except
for the activations are ELU. We train each method for 200
epochs with a batch size of 128. We show the training plots
in Fig. 7b with their corresponding sensitivity plots in Fig.
9b. In the fourth experiment, we use the CIFAR100-ALL-
CNN task from DeepOBS with the ALL-CNN-C network,
which consists of 9 convolutional layers (Springenberg et al.
2015). We use ELU activations insead of ReLU to differ-
entiate between the performance of AdaHesScale and Ada-
HesScaleGN. We show the training plots in Fig. 7a with their
corresponding sensitivity plots in Fig. 9a.

In the MNIST-MLP and CIFAR-10-3C3D experiments,
we performed a hyperparameter search for each method to
determine the best set of β1, β2, and α. The range of β2

is {0.99, 0.999, 0.9999} and the range of β1 is {0.0, 0.9}.
The range of step size is selected for each method to create
a convex curve. Our criterion was to find the best hyperpa-
rameters for each method in the search space that minimizes
the area under the validation loss curve. The performance of
each method was averaged over 30 independent runs. Each
independent run had the same initial representation for the
algorithms used in an experiment. Using each method’s best
hyperparameter configuration on the validation set, we show
the performance of each method against the time in seconds
needed to complete the required number of epochs, which
better depicts the computational efficiency of the methods.
Fig. 3a and Fig. 3b show these results on MNIST-MLP and
CIFAR-10 tasks. Moreover, we show the sensitivity of each
method to the step size in Fig. 5a and Fig. 5b.

In the CIFAR-100-ALL-CNN and CIFAR-100-3C3D ex-
periments, we used the set of β1 and β2 that achieved the
best robustness in the previous two tasks, which were 0.9
and 0.999 respectively. We did a hyperparameter search for
each method to determine the best step size using the spec-
ified β1 and β2. The rest of the experimental details are the
same as the first two experiments. Using each method’s best
hyperparameter configuration on the validation set, we show
the performance of each method against the time in seconds
needed to complete the required number of epochs. Fig. 4a
and Fig. 4b show these results on CIFAR-100-ALL-CNN
and CIFAR-100-3C3D tasks.

Our results show that all optimizers except for BL89 per-
formed well on the MNIST-MLP task. However, in CIFAR-
10, CIFAR-100 3c3d, and CIFAR-100 ALL-CNN, we notice
that AdaHessian performed worse than all methods except

(a) MNIST-MLP

(b) CIFAR-10 3C3D

Figure 3: MNIST-MLP and CIFAR-10 3C3D classification
tasks. Each method is trained for 100 epochs. We show the
time taken by each algorithm in seconds. The performance
of each method is averaged over 30 independent runs. The
shaded area represents the standard error.

BL89. This result is aligned with AdaHessian’s inability to
accurately approximate the Hessian diagonals, as shown in
Fig. 1. Moreover, AdaHessian required more computational
time compared to all methods, which is also reflected in Fig.
2. While being time-efficient, AdaHesScaleGN consistently
outperformed all methods in CIFAR-10-3C3D and CIFAR-
100-3C3D, and it outperformed all methods except Ada-
HesScale in CIFAR-100 ALL-CNN. This result is aligned
with our methods’ accurate approximation of Hessian diag-
onals. Our experiments indicate that incorporating HesScale
and HesScaleGN approximations in optimization methods
can be of significant performance advantage in both com-
putation and accuracy. AdaHesScale and AdaHesScaleGN
outperformed other optimizers likely due to their accurate
approximation of the diagonals of the Hessian and GGN, re-
spectively.

Conclusion

HesScale is a scalable and efficient second-order method for
approximating the diagonals of the Hessian at every net-
work layer. Our work is based on the previous work done by
Becker and Lecun (1989). We performed a series of experi-
ments to evaluate HesScale against other scalable algorithms
in terms of computational cost and approximation accuracy.
Moreover, we demonstrated how HesScale can be used to
build efficient second-order optimization methods. Our re-
sults showed that our methods provide a more accurate ap-
proximation and require small additional computations.

Broader Impact

Second-order information is used in domains other than
optimization. For example, some works alleviating catas-
trophic forgetting use a utility measure for the network’s



(a) CIFAR-100 3C3D

(b) CIFAR-100 All-CNN-C

Figure 4: CIFAR-100 3C3D and CIFAR-100 ALL-CNN
classification tasks. Each method from the first task is
trained for 200 epochs and each method from the second
task is trained for 350 epochs. We show the time taken by
each algorithm in seconds. The performance of each method
is averaged over 30 independent runs. The shaded area rep-
resents the standard error.

connections to protect them. Typically, an auxiliary loss is
used between such connections, and their old values are
weighted by their corresponding importance. Such methods
(LeCun et al. 1990, Hassibi & Stork 1993, Dong et al. 2017,
Kirkpatrick et al. 2017, Schwarz et al. 2018, Ritter et al.
2018) use the diagonal of the Fisher information matrix or
the Hessian matrix as a utility measure for each weight. The
quality of these algorithms depends heavily on the approxi-
mation quality of the second-order approximation. Second-
order information can also be used in neural network prun-
ing. Molchanov et al. (2019) showed that second-order ap-
proximation with the exact Hessian diagonals could closely
represent the true measure of the utility of each weight.

The accurate and efficient approximation for the diago-
nals of the Hessian at each layer enables HesScale to be used
in many important lines of research. Using this second-order
information provides a reliable measure of connection util-
ity. Therefore, using HesScale in these types of problems
can potentially improve the performance of neural network
pruning methods and regularization-based catastrophic for-
getting prevention methods.
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Hessian diagonals of the log-likelihood

function for two common distributions

Here, we provide the diagonals of the Hessian matrix of
functions involving the log-likelihood of two common distri-
butions: a normal distribution and a categorical distribution
with probabilities represented by a softmax function, which
we refer to as a softmax distribution. We show that the exact
computations of the diagonal can be computed with linear
complexity since computing the diagonal elements does not
depend on off-diagonals in these cases. In the following, we
consider the softmax and normal distributions, and we write
the exact Hessian diagonals in both cases.

Softmax distribution

Consider a cross-entropy function for a discrete probability

distribution as f
.
= −

∑|q|
i=1 pi log qi(θ), where q is a proba-

bility vector that depends on a parameter vector θ, and p is a
one-hot vector for the target class. For softmax distributions,

q is parametrized by a softmax function q
.
= eθ/

∑|q|
i=1 e

θi .
In this case, we can write the gradient of the cross-entropy
function with respect to θ as

∇θf(θ) = q − p.

Next, we write the exact diagonal elements of the Hessian
matrix as follows:

diag(Hθ) = diag(∇θ(q − p)) = q − q
2,

where q2 denotes element-wise squaring of q, and ∇ op-
erator applied to a vector denotes Jacobian. Computing the
exact diagonals of the Hessian matrix depends only on vec-
tor operations, which means that we can compute it in O(n).
The cross-entropy loss is used with softmax distribution in
many important tasks, such as supervised classification and
discrete reinforcement learning control with parameterized
policies (Chan et al. 2022).

Multivariate normal distribution with diagonal
covariance

For a multivariate normal distribution with diagonal covari-
ance, the parameter vector θ is determined by the mean-
variance vector pair: θ

.
= (µ,σ2). The log-likelihood of a

random vector x drawn from this distribution can be written
as

log q(x;µ,σ2) = −
1

2
(x− µ)⊤D(σ2)−1(x− µ)

−
1

2
log(|D(σ2)|) + c

= −
1

2
(x− µ)⊤D(σ2)−1(x− µ)

−
1

2
log(

|σ|∑

i=1

σ2
i ) + c,

where D(σ2) gives a diagonal matrix with σ2 in its diag-
onal, |M | is the determinant of a matrix M and c is some
constant. We can write the gradients of the log-likelihood
function with respect to µ and σ2 as follows:

∇µ log q(x;µ,σ
2) =D(σ2)−1(x− µ) = (x− µ)⊘ σ2,

∇σ2 log q(x;µ,σ2) =
1

2

[
(x− µ)2 ⊘ σ2 − 1

]
⊘ σ2,

where 1 is an all-ones vector, and ⊘ denotes element-wise
division. Finally, we write the exact diagonals of the Hessian
matrix as

diag(Hµ) = diag(∇µ(x− µ)⊘ σ
2) = −1⊘ σ2,

diag(Hσ2) = diag
(
∇σ2

[1
2
[(x− µ)2 ⊘ σ2 − 1]⊘ σ2

])

=
[
0.51− (x− µ)2 ⊘ σ2

]
⊘ σ4.

Clearly, the gradient and the exact Hessian diagonals can
be computed in O(n). Log-likelihood functions for normal
distributions are used in many important problems, such as
variational inference and continuous reinforcement learning
control.

Optimization plots in the number of epochs

We give the training loss, training accuracy, validation loss,
validation accuracy, test loss, and test accuracy for each of
the methods we include in our comparison in Fig. 6 and Fig.
7. Moreover, we give the sensitivity plots for β1, β2, and α
for each method in Fig. 8 and Fig. 9.



0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 L
os

s

GGNMC
AdaHesScale
AdaHesScaleGN
SGD
BL89
AdaHessian
Adam

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai

n 
Lo

ss

0.94

0.95

0.96

0.97

0.98

Te
st

 A
cc

ur
ac

y

0 20 40 60 80 100
Epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Tr
ai

n 
A

cc
ur

ac
y

(a) MNIST

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Te

st
 L

os
s

GGNMC
AdaHesScale
AdaHesScaleGN
SGD
BL89
AdaHessian
Adam

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Tr
ai

n 
Lo

ss

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

0 20 40 60 80 100
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n 
A

cc
ur

ac
y
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Figure 6: Learning curves of each algorithm on two tasks,
MNIST-MLP and CIFAR-10 3C3D, for 100 epochs. We
show the best configuration for each algorithm on the val-
idation set. The best parameter configuration for each algo-
rithm is selected based on the area under the curve for the
validation loss.
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(b) CIFAR-100 3C3D

Figure 7: Learning Curves of each algorithm on CIFAR-100
with All-CNN and 3C3D architectures, for 100 epochs. We
show the best configuration for each algorithm on the valida-
tion set. The best parameter configuration for each algorithm
is selected based on the area under the curve for the valida-
tion loss.
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Figure 8: Parameter Sensitivity study for each algorithm
on two data sets, MNIST and CIFAR-10. The range of β2

is {0.99, 0.999, 0.9999} and the range of β1 is {0.0, 0.9}.
Each point for each algorithm represents the average test
loss given a set of parameters.

(a) CIFAR-100 All-CNN

(b) CIFAR-100 3C3D

Figure 9: Parameter Sensitivity study for each algorithm
on CIFAR-100 with All-CNN and 3C3D architectures. The
range of step size is {10−5, 10−4, 10−3, 10−2, 10−1, 100}.
We choose β1 to be equal to 0.9 and β2 to be equal to 0.999.
Each point for each algorithm represents the average test
loss given a set of parameters.


