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Abstract

Quantization is wildly taken as a model compression tech-
nique, which obtains efficient models by converting floating-
point weights and activations in the neural network into lower-
bit integers. Quantization has been proven to work well on
convolutional neural networks and transformer-based models.
Despite the decency of these models, recent works (Touvron
et al. 2021; Fusco, Pascual, and Staar 2022; Ma et al. 2022)
have shown that MLP-based models are able to achieve com-
parable results on various tasks ranging from computer vision,
NLP to 3D point cloud, while achieving higher throughput
due to the parallelism and network simplicity. However, as
we show in the paper, directly applying quantization to MLP-
based models will lead to significant accuracy degradation.
Based on our analysis, two major issues account for the ac-
curacy gap: 1) the range of activations in MLP-based models
can be too large to quantize, and 2) specific components in
the MLP-based models are sensitive to quantization. Conse-
quently, we propose to 1) apply LayerNorm to control the
quantization range of activations, 2) utilize bounded activa-
tion functions, 3) apply percentile quantization on activations,
4) use our improved module named multiple token-mixing
MLPs, and 5) apply linear asymmetric quantizer for sensitive
operations. Equipped with the abovementioned techniques,
our Q-MLP models can achieve 79.68% accuracy on Ima-
geNet with 8-bit uniform quantization (model size 30 MB)
and 78.47% with 4-bit quantization (15 MB).

Introduction
The deployment of Neural Network (NN) models is often
impossible due to application-specific constraints on latency,
power consumption, and memory footprint. This prohibits
the use of state-of-the-art models with excellent accuracy
but large parameter size and FLOPS. Quantization has been
proposed as one of several model compression methods to
enable efficient inference. Generally, quantization converts
floating-point NN models into integer-only or fixed-point
models, which is efficient in memory consumption. Thanks
to faster integer arithmetic compared to its floating-point
counterparts, quantization can also reduce the computation
when both weights and activations in the NN are quantized.

Since the success of traditional CNN networks and
transformer-based networks on various tasks from computer
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vision to NLP, significant research efforts have been spent on
finding better building blocks for NN architectures. Recent
works (Tolstikhin et al. 2021; Touvron et al. 2021; Liu et al.
2021a; Fusco, Pascual, and Staar 2022; Ma et al. 2022) have
proposed that NN models based on Multi-Layer-Perceptron
(MLPs) can also achieve state-of-the-art performance on
those tasks. In addition to accuracy, MLP-based models ben-
efit from their intrinsic parallelism and model simplicity and
can potentially achieve higher throughput compared to CNNs
and transformers. As Table 1 shows, ResMLP has larger
throughput than ViT and ResNets despite having more pa-
rameters and FLOPs.

Table 1: Comparing MLP-based models with transformers
and CNNs. The throughput is measured on a single TITAN
RTX 2080Ti (24GB) GPU with batch size fixed to 128. For
reference, the accuracy included here is obtained by models
trained solely on ImageNet with no extra data.

Model Params Throughput FLOPs Top-1
(×106) (img/sec) (G) (%)

ResMLP-S24/16 (Touvron et al. 2021) 30 468 11.94 79.4
ResMLP-B24/16 (Touvron et al. 2021) 115 195 46.08 81.0

ViT-S/16 (Dosovitskiy et al. 2020) 22 451 8.48 78.1
ViT-B/16 (Dosovitskiy et al. 2020) 86 255 33.72 79.9

ResNet-50 (He et al. 2016) 26 466 7.76 77.7
ResNet-101 (He et al. 2016) 45 287 15.20 79.2

Specifically, each block in MLP-based models has the
same parameter size and the same resolution of feature maps,
whereas the blocks at the beginning of CNNs tend to have a
much smaller parameter size and a larger resolution of fea-
ture maps than the subsequent blocks. This uniformity of
building blocks makes MLP-based models easier to deploy
and optimize on the hardware platforms compared to CNNs.
Furthermore, uniform blocks are also friendly to uniform
quantization. In contrast, when applying ultra-low bit quanti-
zation on CNNs, mixed-precision quantization (Wang et al.
2019; Dong et al. 2019, 2020) is often required to alleviate
the accuracy degradation, for which the hardware support
can be sub-optimal. Compared to transformers, MLP-based
models are also more efficient since they can avoid inten-
sive computation (Tolstikhin et al. 2021) by not explicitly
applying the attention mechanism.

In order to simultaneously achieve high accuracy and effi-
cient inference, it is natural to explore quantization on MLP-



based models. However, directly applying quantization to
MLP-based models will lead to high accuracy degradation.
In this work, we first find that the range of activations in
specific MLP-based models can become too large to quan-
tize. Consequently, we propose to restrict the activation range
with carefully designed normalization and activation layers.
From our experiments, applying LayerNorm instead of the
Affine operation, utilizing bounded activation functions, and
applying percentile quantization for activations proved bene-
ficial in reducing the activation range. Secondly, our analysis
shows that specific operations are more sensitive than the oth-
ers in MLP-based models. To tackle this issue, we propose a
new component named multiple token-mixer, which can be
both efficient and less sensitive to quantization. Furthermore,
applying asymmetric linear quantizers onto or after sensitive
operations helps improve accuracy, with a trivial overhead to
support the mixture of symmetric and asymmetric quantizers.
Our contributions can be summarized as follows:
• We are the first to analyze the causes of significant accu-

racy degradation when quantizing MLP-based models.

• We provide universal instructions for designing MLP-
based models in order to make them quantization-friendly.

• Our proposed quantization methods can achieve 79.68%
accuracy on ImageNet with 8-bit quantization (model
size 30 MB), and our 4-bit quantized model has 78.47%
accuracy with only 15 MB model size.

Related work
Quantization (Zhou et al. 2017a; Jacob et al. 2018; Zhang
et al. 2018; Wang et al. 2019; Cai et al. 2020; Gholami et al.
2021; Zhao et al. 2022) are common model compression
techniques where low-bit precision is used for weights and
activations to reduce model size without changing the origi-
nal network architecture. Quantization can also potentially
permit the use of low-precision matrix multiplication or con-
volution, making the inference process faster and more effi-
cient.

Despite these advances, directly performing post-training
quantization (PTQ) with uniform ultra-low bit-width still
results in a significant accuracy degradation. As such,
Quantization-aware training (QAT) is proposed to train the
model to better adapt to quantization. Another promising
direction is to use mixed-precision quantization (Zhou et al.
2017b; Wang et al. 2019; Yao et al. 2021), where some layers
are kept at higher precision. Although mixed-precision quan-
tization can be well supported on some existing hardware
(such as FPGAs) (Huang et al. 2021; Dong et al. 2021), it
can lead to a non-trivial overhead on many other hardware
platforms (such as GPUs).

MLP-based Models have been recently proposed to perform
various tasks, competing against previous convolutional neu-
ral networks (CNNs) and transformers. The MLP-Mixer (Tol-
stikhin et al. 2021) architecture, built entirely on multi-layer
perceptrons (MLPs), has produced competitive results in
vision tasks. Due to its simple and uniform structure, MLP-
Mixer achieves high throughput and brings new possibilities
to efficient-learning topics.

Another important characteristic of MLP-Mixer is that it
separately uses a channel-mixing MLP to enable communi-
cations between different feature channels within each token

and a token-mixing MLP to enable communications between
different spatial locations across patches. This two-step pro-
cess in each layer increases the interpretability of deep neural
networks and enables further investigating and special de-
signing of each part in later works. In a subsequent work
(Touvron et al. 2021), the authors propose the architecture
ResMLP, which simplifies the token-mixing module and the
norm-layer, achieving a better efficiency-accuracy trade-off.
Later, (Liu et al. 2021a; Yu et al. 2021, 2022) further pushes
the limits of MLP-based models by finding better ways to
improve token-mixing and channel-mixing simultaneously.
A very recent work (Trockman and Kolter 2022) combines
the merits of convolutions and this mixer-based communica-
tion separating technique and proposes ConvMixer, which
outperforms not only CNNs but also vision transformers and
MLP-Mixer variants. It should be noted that, although Con-
vMixer is not precisely composed of MLPs, it is intrinsically
similar to MLP-based models rather than CNNs. Therefore,
we still conduct a detailed analysis of it due to its mixer-based
structure and state-of-the-art performance.

Methodology
In this section, we introduce a set of quantization techniques
to combine the merit in MLP structure and the efficiency
of quantization. We demonstrate that the MLP-based model
provides inherent advantages for uniform quantization and
can achieve a satisfying accuracy-efficiency trade-off when
provided with appropriate techniques.

Quantization preliminaries
Quantization methods quantize weights and activations into
integers with a scale factor S and a zero point Z0. Uniformly
quantizing activations or weights to k bit can be expressed
as:

S =
rmax − rmin

2k − 1

Z0 = round
(
2k−1 − 1− rmax

S

)
q = round

( r

S
+ Z0

) (1)

where r is the real number and q is the quantized integer and
can then be used to enable hardware integer arithmetic accel-
eration. In baseline methods, we use symmetric quantization,
which means Z0 equals 0, and the first bit of q serves as a
sign bit, with the rest k-1 bits used to represent the integer.
(More details in Asymmetric quantization)

There are usually two types of quantization methods: post-
training quantization (PTQ) and quantization-aware training
(QAT). For PTQ, we apply the above quantization directly
in the inference stage to the pre-trained weights, and we
use the quantized weights and activations to generate results.
For QAT, we define the forward and backward pass for the
above quantization operations and train quantized parameters
together with the model parameters in order to get better
quantization results. Both methods are useful and can be
applied to different circumstances for deployment.

Restrict activation ranges
The magnitude of the activation range is highly related to
the performance of the quantized models. Generally, a more
extensive activation range loses more information with a
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Figure 1: Token-mixing module using multiple token-mixing MLPs.

given bitwidth quantization than a small activation range.
In the experiments, we found that the activation ranges of
some MLP-based models (e.g., ResMLP and ConvMixer) are
unusually high, which leads to severe accuracy degradation
in the quantized model. Therefore, it is of great importance to
carefully deal with these activation ranges and use techniques
to restrict them.

Norm-layer design The choice of norm layer significantly
impacts the activation range of features and, therefore, is cru-
cial to the PTQ performance of MLP-based models. Different
MLP-based models use different norm layers, which lead to
very different activation ranges.

Some models use a simple Affine transformation (Equa-
tion 2) as the norm-layer, which only rescales and shifts the
input in an element-wise manner. Though it is demonstrated
to be a slightly simpler and more efficient layer than Lay-
erNorm, we found it potentially leads to a huge activation
range (more details in Section Experimental results) and
incurs an accuracy drop in its quantized model.

Affα,β(x) = Diag(α)x+ β (2)

Therefore, we proposed to replace Affine transformation
with LayerNorm or BatchNorm (both can be represented by
Equation 3) in all the MLP-based models in order to restrict
the activation range using channel/batch statistics.

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β (3)

Activation layer design The choice of activation layer is
another critical factor that affects the activation range in
MLP models. Most MLP models use ReLU or GELU as
activation layers, and they have been tested to have similar
performance (Touvron et al. 2021). However, both GELU and
ReLU are not the best choice for quantized MLP-based mod-
els since they are not bounded when activations are positive.
We propose that the best activations for quantized MLP-based
models are ones that are both bounded in negative input val-
ues and positive input values.

Parametrized clipping activation (PACT) (Equation 4),
which we apply in our experiments, is one of the good choices
for the activation layer of MLP-based models. It sets a learn-
able upper bound parameter to clip all the input values into
the range of [0,α]. (More details in paper (Choi et al. 2018))

y = PACT (x) = 0.5(|x| − |x− α|+ α)

=

{
0, x ∈ (−∞, 0)
x, x ∈ [0, α)
α, x ∈ [α,+∞)

(4)

In practice, this kind of activation layer can largely restrict
the activation range of the MLP-based model and lead to a
better performance in quantized MLP models.

Percentiles in activation range Though some MLP-based
models have a very large activation range, it does not neces-
sarily imply that they have a large mean value of activations.
Instead, the large range may be caused by some extreme
outliers in the outputs. When this happens, we can effec-
tively recover the performance by using percentiles to clip
the extreme activation values.

Tackle sensitive layers
Parameters and activations in different layers have relatively
different sensitivity. Mixed-precision quantization methods
allocate different bitwidth for different layers to overcome
this problem. However, in the context of uniform quanti-
zation, we cannot tune a set of different bitwidths, so we
proposed two alternative methods to tackle this issue.

Multiple token-mixing MLPs Usually, MLP-based mod-
els have two modules in each layer: the token-mixing module
and the channel-mixing module. However, the two modules
are different in parameter size and sensitivity. We use the Hes-
sian trace analysis (Yao et al. 2020) to evaluate the sensitivity
of the token-mixing MLPs and the channel-mixing MLPs in
MLP-Mixer and present the results in Figure 3. We found
that the average sensitivity of the parameters (indicated by
the mean Hessian trace of the learnable parameters) in token-
mixing MLPs is much higher than that in channel-mixing
MLPs. We can also comprehend this from a different per-
spective: since the channel dimensions are usually 4-5 times
the token dimensions, parameters in token-mixing MLPs are
usually reused 3-4 times more than that of channel-mixing
MLPs (because the same MLP applies to all the token/chan-
nel dimensions). Therefore, the parameters in token-mixing
MLPs are intuitively more sensitive to changes.

The above analysis explains why many subsequent papers
performed better in MLP-based models after redesigning the
token-mixing MLPs. It also indicates that we should carefully
deal with parameters in token-mixing MLPs since perfor-
mance drop in post-training quantization is highly related to
parameter sensitivity.

Consequently, we modify the structure of the original
token-mixing MLPs to reduce their sensitivity. As shown
in Figure 1, different from applying the same token-mixing
MLP to each of the C different channels in the original MLP-
Mixer layers, we divide the channels into several groups
and apply different token-mixing MLPs to different chan-
nel groups. This approach reduces the reuse of parameters
in token-mixing MLPs and increases the expressibility of
token MLPs. The experiments show that both the accuracy
of MLP-Mixer and the accuracy of the post-training quan-
tized MLP model increase after introducing the multiple
token-mixing MLPs. Meanwhile, since the number of the pa-
rameters in channel-mixing MLPs is 30 times larger than that
in token MLPs, using multiple token-mixing MLPs will not



significantly increase the total parameter size of the model.
Moreover, thanks to the merits of quantization, the model
size of the quantized multiple token-mixing Mixer is still
much smaller than the original MLP-Mixer.

Asymmetric quantization For MLP-based models, sensi-
tivity imbalances are not only found in weights in different
MLPs but also found between weights and activations. In the
experiments, we find that activations are much more sensitive
than weights in MLP-based models. This argument is derived
from the fact that we can have a relatively good PTQ result
with ultra-low bitwidth (3 or 4) weight quantization and 8-bit
activation quantization, while we cannot get any acceptable
PTQ results with an activation bit less than 8 (no matter how
many bit the weights use).

To better deal with these sensitive activations in the con-
text of uniform quantization, we propose to use asymmetric
quantization for activations and still use symmetric quantiza-
tion for weights. The term asymmetric quantization means
that the zero point could be any floating point value, and the
activation range depends on the difference in max and min of
the input value instead of the max of the absolute value. More
concretely, the scaling factor can be expressed as Equation 5
for symmetric quantization:

S =
max(abs(rmax), abs(rmin))

2k−1 − 1
(5)

and Equation 6 for asymmetric quantization,

S =
rmax − rmin

2k − 1
(6)

where r refers to the real number inputs and k refers to the
activation bitwidth. From Equation 5 and 6, we can see that
asymmetric quantization potentially provides one more bit
for activation quantization (if the max positive and negative
values are in different orders of magnitude). Therefore, we
can better deal with sensitive activations while staying within
the scope of uniform quantization.

Experimental results

To evaluate our proposed quantization approaches for MLP-
based models, we perform a series of experiments on
ImageNet with MLP-Mixer-B/16, ResMLP-S24/16, and
ConvMixer-768/32 (since they have similar model scales).
Results show that some of these techniques benefit the
model’s accuracy, and others are even indispensable to avoid
severe performance loss incurred by quantization. We should
note that, although ConvMixer does not have the MLP in
its structure, it absorbs the idea in those recently proposed
MLP-based models that the multi-head attention module can
be replaced by MLP or convolution for higher efficiency. By
default, we use uniform quantization throughout the layers to
take advantage of the simplicity of MLP-based models, with
weights and activations quantized to 8-bit for post-training
quantization, and weights to 3/4/8 bit and activations to 8-bit
for quantization-aware training. In addition, we use channel-
wise quantization for weights and exponential moving aver-
ages (EMA) with momentum to derive the quantization range
for activation quantization.

Restrict activation ranges
In experiments, we find that some MLP-based models have
unusually high activation ranges, which lead to large quan-
tization intervals and result in accuracy degradation during
quantization. Therefore, we first calculate the max and 99%
percentile of the activation values throughout the layers and
plot their activation statistics in Figure 2. These values are
crucial for quantization results since they determine the acti-
vation range in standard quantization settings and percentile
quantization settings, respectively. Results in the top two
graphs in Figure 2 show that the original ResMLP and Con-
vMixer models have a relatively high activation range com-
pared to traditional CNNs and Vision Transformers. The
bottom two graphs in Figure 2 show that after using our pro-
posed methods, such as replacing Affine with LayerNorm in
ResMLP and using PACT as activation layers in ConvMixer,
the activation range is well restricted. In conclusion, these
graphs not only present the causes of large accuracy degra-
dation in quantized MLP-based models but also validate the
effectiveness of our proposed methods.

Norm-layer design As mentioned in Section Methodol-
ogy, quantized MLP-based models may benefit from Lay-
erNorm or BatchNorm. We demonstrate this by replacing
the Affine function in ResMLP with LayerNorm. Results in
Table 2 show that this approach achieves better classification
results in PTQ experiments than the original ResMLP model.
Moreover, instability issue occurs during QAT experiments
for the original ResMLP, and quantization can only be done
successfully for ResMLP with LayerNorm. The results sug-
gest that LayerNorm helps restrict the activation range better
than the Affine function, which then helps to derive a more
accurate integer representation and leads to better accuracy.

Table 2: Affine vs. LayerNorm in ResMLP. Here, we abbrevi-
ate Weight Precision and Activation Precision as “Precision”,
Norm-layer as “Norm”, Model Size as “Size” (in MB), Bit
Operations as “BOPS” (in G), and Top-1 Accuracy as “Top-
1”. Note that BOPS is defined as FLOPS × activation bits
× weight bits, and “WxAy” means weight with x-bit and
activation with y-bit. Other tables use similar abbreviations
in the rest of the paper.

Method Precisioin Norm Size(MB) BOPS(G) Top-1

Baseline W32A32 Affine 120 12226 79.38
LN 120 12226 79.59

PTQ W8A8 Affine 30 764 74.93
LN 30 764 79.20

QAT W8A8 Affine 30 764 -
LN 30 764 79.44

QAT W4A8 LN 15 382 78.35

Activation layer design For models with an extremely
large activation range, using LayerNorm or BatchNorm may
not be sufficient for restricting the activation range. For ex-
ample, ConvMixer, using BatchNorm as its norm layer, still
suffers from quantization degradation due to its large activa-
tion range. However, results in Table 3 demonstrate that we
can efficiently restrict the activation range by using activation
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Figure 2: Graph of the max (left) and the 1% largest (right) activation values in vision models throughout the layers. Layer
Position shows the relative position of a given layer in the whole model. For example, the output of the third layer in a 24-layer
ResMLP model has a layer position of 12.5%. The top two graphs show the activation values in MLP, Vision Transformers, and
CNNs. The bottom two graphs show activation values in MLPs and our proposed quantization-friendly MLP variants.

layers with bounded outputs for both negative and positive
input values. With the help of a narrower activation range, our
PACT-ConvMixer achieves at least similar results in different
PTQ settings and much better results in all settings of QAT.
Here, we choose to use PACT activation in our quantized
ConvMixer model since it has a learnable upper bound and
is potentially more capable in restricting the range. Other
bounded activation layers (for example, ReLU6) should work
as well. It is important to mention that we use the asymmet-
ric quantization settings for QAT comparison since QAT for
ConvMixers cannot converge in symmetric settings. A poten-
tial reason is that QAT suffers more from sensitive activation
ranges, and asymmetric quantization reduces activation sen-
sitivity, which will be discussed in detail in Tackle sensitive
layers.

Table 3: ReLU vs. PACT in ConvMixer

Method Precisioin Activation Size(MB) BOPS(G) Top-1

Baseline W32A32 ReLU 84 42762 80.16
PACT 84 42762 80.22

PTQ W8A8 ReLU 21 2672 57.81
PACT 21 2672 68.91

QAT(asym) W8A8 ReLU 21 2672 77.09
PACT 21 2672 78.65

QAT(asym) W4A8 ReLU 11 1336 75.88
PACT 11 1336 77.89

Percentile An easier way to restrict the activation range
is to use a percentile max value when calculating the quan-
tization parameters. For example, using a 99% percentile
option can help clip the 1% biggest activation values so that
the activation range will no longer depend on those extreme
outliers. Table 4 shows that percentile partly helps to recover
the accuracy of the quantized models. Note that calculating
percentiles in QAT make the training process much slower,
so we only use activation percentiles in PTQ experiments.

Table 4: Percentile in ResMLP

Method Precisioin Percentile Size(MB) BOPS(G) Top-1

Baseline W32A32 × 120 12226 79.38

PTQ W8A8 × 30 764 74.93
✓ 30 764 77.74

Tackle sensitive layers
Multiple token-mixing MLPs As mentioned in Section
Methodology, we calculate the Hessian traces of each MLP
in MLP-Mixer in Figure 3. Results show that parameters
in token-mixing MLPs are more sensitive than in channel-
mixing MLPs. Therefore, token-mixing MLPs should be
carefully designed in order to achieve better PTQ results.

In Table 5 we show that the full precision accuracy, PTQ,
and QAT results all obtain a remarkable improvement after
introducing the multiple token-mixing MLP into the origi-
nal MLP model. It indicates that reducing the sensitivity of
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Figure 3: Mean Hessian traces of token-mixing MLP and
channel-mixing MLP in layers of MLP-Mixer. Note that
the Hessian trace values are normalized according to their
parameter size.

specific parameters is crucial for obtaining high-performance
quantized MLP-based models.

Table 5: Token-mixing in MLP-Mixer

Method Precisioin Token-mixing Size(MB) BOPS(G) Top-1

Baseline W32A32 Single 240 25825 76.64
Multiple 261 25825 78.35

PTQ W8A8 Single 60 1614 74.46
Multiple 65 1614 75.34

QAT W4A8 Single 30 807 75.82
Multiple 33 807 77.66

QAT W3A8 Multiple 25 605 76.85

Asymmetric quantization As described in Section
Methodology, asymmetric quantization can help ease the
sensitivity of activation layers by adding an extra bitwidth
implicitly. Table 6 shows that asymmetric quantization is
helpful in quantized MLP-based models and especially im-
portant in the quantization of ConvMixer. We also find that
ConvMixer can only use QAT in the asymmetric quantization
mode, and the training would be very likely to diverge other-
wise. These results imply that using asymmetric quantization
to reduce sensitivity not only provides better performance
but also helps stabilize QAT.

Table 6: Symmetric vs. Asymmetric in PTQ experiments

Model Precisioin Sym/Asym Size(MB) BOPS(G) Top-1

Q-MLP-Mixer W8A8 Sym 60 1614 74.46
Asym 60 1614 76.20

Q-ResMLP W8A8 Sym 30 764 74.93
Asym 30 764 78.28

Q-ConvMixer W8A8 Sym 21 2672 57.81
Asym 21 2672 76.21

Ablation study
Here, we take ConvMixer as an example and combine all the
techniques mentioned above to provide a thorough ablation

study to illustrate the effectiveness of our methods. As the
results shown in Table 7, bounded activation layer, activation
percentiles, and asymmetric quantization not only improve
the quantization performance separately, but they can boost
the performance with any of the combinations. Incorporating
all of the aforementioned methods gives us the best results
for ConvMixer with an 8-bit PTQ of 76.78% ImageNet clas-
sification accuracy.

Table 7: Ablation Study

Model BatchNorm Percentile Asymmetric PACT Top-1

ConvMixer - - - - 80.16

Q-ConvMixer

✓ × × × 57.81
✓ ✓ × × 69.36
✓ × ✓ × 76.21
✓ ✓ ✓ × 76.35
✓ × × ✓ 68.91
✓ ✓ × ✓ 73.88
✓ × ✓ ✓ 76.06
✓ ✓ ✓ ✓ 76.78

Best quantized models
Combining all of the abovementioned methods, we derive the
best results for quantized MLP-Mixer, ResMLP, ConvMixer
in Table 8 and 9 with boldface. Since we are the first to in-
vestigate quantization aspects of MLP models, there are few
previous works to compare with. Therefore, we apply the
open-sourced CNN-targeted quantization method HAWQ-v3
(Yao et al. 2021), which supports both PTQ and QAT, to
MLP-based models for comparison. Results in Table 8 and
9 show that our quantization method works much better on
MLP-based models, indicating the importance of considering
the MLP models’ particular structure. Although all three mod-
els gain much better accuracy after applying our proposed
methods, ResMLP distinctly outperforms the other two MLP-
based models in experiments. It implies that ResMLP variants
are potentially more efficient and quantization friendly. Mean-
while, though MLP-Mixer’s performance and computation-
accuracy trade-off are slightly behind the other two models,
it is the easiest to quantize among the three MLP-based mod-
els. QAT on MLP-Mixer can be conducted smoothly, while
instability issue occurs in ResMLP and ConvMixer unless
we redesign the norm-layer and activation layer according to
Section Methodology.

To compare our best quantized MLP-based models with
quantized CNNs and transformer-based networks, we high-
light the best quantized MLP-based models with different
precision settings in Table 8 and 9. Results show that Q-
ResMLP outperforms other quantized models with similar
model scales and can even achieve comparable performance
with some much larger models.

Implementation details
We primarily evaluate our proposed and existing models on
the ImageNet-1k validation set. Specifically, we add our Q-
MLP-Mixer, Q-ResMLP, Q-ConvMixer models into the timm
framework (Wightman 2019), and then train new models and
implement the Quantization-Aware Traning (QAT) under the



Table 8: Comparison of the post-training quantization performance of MLP-based models with CNNs and transformer-based
models using different quantization methods.

Category Model Method Precisioin Size(MB) BOPS(G) Top-1

MLP-based Networks

Q-MLP-Mixer HAWQ-V3 (Yao et al. 2021) W8A8 60 1614 74.40
Ours W8A8 65 1614 77.75

Q-ResMLP HAWQ-V3 (Yao et al. 2021) W8A8 30 764 76.69
Ours W8A8 30 764 79.43

Q-ConvMixer HAWQ-V3 (Yao et al. 2021) W8A8 21 2672 72.54
Ours W8A8 21 2672 76.78

Transformer Networks

Q-DeiT-S EasyQuant (Wu et al. 2020) W8A8 22 543 76.59
Bit-Split (Wang et al. 2020) W8A8 22 543 77.06

Q-DeiT-B EasyQuant (Wu et al. 2020) W8A8 86 2158 79.36
Bit-Split (Wang et al. 2020) W8A8 86 2158 79.42

Q-ViT-B Percentile (Li et al. 2019) W8A8 86 2158 74.10
PTQ-ViT (Liu et al. 2021b) W8A8 86 2158 76.98

Convolutional Networks Q-ResNet50 Bit-Split (Wang et al. 2020) W8A8 26 496 75.96
ZeroQ (Cai et al. 2020) W8A8 26 496 77.67

Table 9: Comparison of the quantization-aware training performance of MLP-based models with CNNs using different quantiza-
tion methods (we did not find QAT results of transformers in previous works). Here, 4/8 in HAWQ-V3 means mixed precision
with 4 and 8 bits. Note that Q-ResMLP and Q-ConvMixer results using HAWQ-V3 are derived after applying our norm-layer
and activation-layer design to the original model.

Category Model Method Precisioin Size(MB) BOPS(G) Top-1

MLP-based Networks

Q-MLP-Mixer
HAWQ-V3 (Yao et al. 2021) W8A8 60 1614 76.28

Ours W8A8 65 1614 78.17
Ours W4A8 33 807 77.94

Q-ResMLP
HAWQ-V3 (Yao et al. 2021) W8A8 30 764 77.36

Ours W8A8 30 764 79.68
Ours W4A8 15 382 78.47

Q-ConvMixer
HAWQ-V3 (Yao et al. 2021) W8A8 21 2672 75.88

Ours W8A8 21 2672 78.65
Ours W4A8 11 1336 77.89

Convolutional Networks Q-ResNet50

Integer Only (Jacob et al. 2018) W8A8 26 496 74.90
RVQuant (Park, Yoo, and Vajda 2018) W8A8 26 496 75.67

HAWQ-V3 (Yao et al. 2021) W8A8 26 496 77.58
HAWQ-V3 (Yao et al. 2021) W4/8A4/8 19 308 75.39
LQ-Nets (Zhang et al. 2018) W4A32 13 992 76.40

default settings in (Tolstikhin et al. 2021; Touvron et al. 2021;
Trockman and Kolter 2022) except changing the initial learn-
ing rate to 2×10−5 during QAT. The training for new models,
such as multiple token-mixing MLPs and the ResMLP with
LayerNorm, usually takes 4-5 days on eight TITAN RTX
2080Ti (24GB) GPUs, and the QAT experiments usually take
1-2 days.

Conclusions
In this work, we analyze the quantization of state-of-the-art
MLP-based vision models. Two major problems concluded
are: 1) MLP-based models suffer from large quantization
ranges of activations 2) specific components of MLP-based
models are sensitive to quantization. To alleviate the degrada-
tion caused by activations, we propose to apply LayerNorm
to control the quantization range, and we also take advantage
of bounded activation functions and percentile quantization
on activations. In order to tackle the sensitivity, we propose

to apply our multiple token-mixing MLPs and use linear
asymmetric quantizers for the sensitive operations in MLP-
based models. With these practical techniques, our Q-MLP
models can achieve 79.43% top-1 accuracy on ImageNet
with 8-bit post-training quantization (30 MB model size). For
quantization-aware training, our Q-MLP models can achieve
79.68% accuracy using 8-bit (30 MB) and 78.47% accuracy
using 4-bit quantization (15 MB).
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