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Abstract
Image attributes are often fused with other input data in many
applications, where the existing fusing methods are usually
data-driven. Such data-driven fusion can lead to overfitting or
slow convergence. In this work, we propose a novel method
of encoding image attributes. We also propose a novel fu-
sion technique that combines the attribute encoding and the
image encoding. Our novel technique requires very few or
even no learnable parameters, but still achieves comparable
performance as other data-driven fusion techniques. Besides,
our fusion technique enables the network to learn faster when
new attributes are added in on-the-fly. Hence, we claim that
our fusion technique is efficient in terms of model size and
training speed. With the novel fusion technique, we find that
an image classifier can be enhanced by fusing it with a pre-
trained attribute extractor. Since the fusion requires few or
even no additional training parameters, the enhancement is
for free. This opens a new direction of recognition: instead of
training a larger image classifier to improve the accuracy, we
can use a pre-trained attribute extractor to enhance the exist-
ing classifiers.

Introduction
In many vision applications, convolutional neural networks
(CNN) for object recognition are fused with networks ex-
tracting features from other inputs (e.g. sounds, texts). Ex-
amples include the tasks of visual question answering (Antol
et al. 2015; Zhang et al. 2016; Goyal et al. 2017) and cross-
modal retrieval (Wei et al. 2016; Zhen et al. 2019). The fu-
sion of the heterogeneous input data is usually modeled by
deep neural networks (DNNs). Thanks to the strong approxi-
mation capability of DNNs, the data fusion usually performs
well given enough training data and training epochs.

However, fusing heterogeneous input data via networks
requires additional learning, which sometimes leads to over-
fitting or slow convergence. The training overhead is due to
the data-driven approach. We found that the overhead may
be reducible, especially when the additional information has
a semantically meaningful structure. Specifically in this pa-
per, we study the fusion of images with their attributes,
where attributes have an inherent disentangled structure.
That is, attributes can be decomposed into independent com-
ponents (e.g. color, pattern), where each component contains
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several atomic attributes (e.g. blue, green). We ask the fol-
lowing question: if we can use high-dimensional vectors to
represent atomic attributes and define operations to model
their combination, can we get rid of learning the attribute
encoders?

In this work, we answer this question by introduc-
ing a novel attribute fusing mechanism based on hyper-
dimensional computing (shortly HDC) (Kanerva 2009).
HDC works by randomly sampling large-size vectors which
are approximately orthogonal to each other. Additionally,
HDC allows math operations like superposition and bind-
ing, through which hypervectors are combined in meaning-
ful ways. This gives us a way to use a non-learning frame-
work to approximate the learning of attribute encoders. The
non-learning framework requires few or even no learnable
parameters, and hence requires minimal training when new
attributes are introduced.

We apply the fusion technique to enhance object recog-
nition. We extract the visual attributes of an image and fuse
the attributes with the image encoding. The fused output is
fed to fully-connected layers for classification.

Our experiments show that when fusing images and their
visual attributes, the accuracy and transferability improves
significantly compared with a vanilla CNN classifier. In ad-
dition, our novel fusion technique achieves the largest per-
formance gain compared with other strong baselines like
feature concatenation and deep merge (Hu, Lu, and Tan
2017). This opens a new direction for visual recognition. Be-
sides, if additional information (e.g. text descriptions) is also
collected when the image is taken, our novel fusing tech-
nique can be applied to retrieve the joint embedding of both
information for the latter tasks. Our contribution can be sum-
marized as followed:

1. We propose an efficient and effective approach to en-
code attributes by adopting the mathematical operations
in HDC. The encoding scheme requires very few (or
even no) learnable parameters but still yields the high-
est accuracy when combining image embeddings of ob-
jects with attributes compared with other commonly-
used techniques. It also takes fewer epochs for the net-
work to converge.

2. We provide a new direction of visual recognition. Instead
of training larger networks to improve the performance
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Figure 1: Fusion of images and their visual attributes. The visual attributes are disentangled into different components (i.e.
color, pattern, shape, and texture). The embedding of each component is computed by summing up the positive attributes. The
embedding of all components are then combined through the binding operation to obtain the final attribute embedding. Finally,
the image embedding and the attribute embedding is fused through the binding operation to retrieve the joint embedding. ⊗ in
the figure denotes the binding operation.

marginally, we can introduce an attribute predictor to en-
hance current image classifiers, in terms of both accuracy
and transferability.

Background
In this section, we give a brief overview of Hyper-
dimensional Computing (HDC), also known as Vector Sym-
bolic Architecture (VSA) (Kleyko et al. 2021). HDC uses
very high dimensional vectors, called hypervectors, to per-
form symbolic computation. Two symbolic operations are
supported for hypervectors. Using those basic elements and
operations, we can design powerful encoders.
Hypervectors d-dimensional random vectors are called
hypervectors if they are drawn from a distribution H such
that any two vectors are very likely orthogonal to each other.
That is, for any ϵ > 0, Prob.

(
|cos(x,y)| < ϵ

)
→ 1 when

d → ∞, where x,y ∼ H and cos is the cosine similar-
ity between two vectors. For example, a hypervector x can
be generated by independently choosing a random value for
each element of the vector from the standard normal distri-
bution, i.e. x ∼ N(0, Id). Because of its simplicity, we will
use this approach of generating hypervectors throughout the
paper.

Hypervectors can be combined through two fundamental
symbolic operations, superposition and binding:
Superposition A binary operation + : Rd × Rd → Rd is a
superposition if the following properties hold:
1. Commutative property: x+ y = y + x.
2. Associative property: x+ (y + z) = (x+ y) + z.
3. Similarity: cos(x+ y,x) >> 0.
Superposition combines vectors into a single vector of the
same dimension, and the superposed vector is similar to all
of its components. For real vectors, superposition is done by
summing or averaging vectors.
Binding A binary operation ⊗ : Rd×Rd → Rd is a binding
operation if the following properties hold:

1. Commutative property: x⊗ y = y ⊗ x.
2. Distributive property: x⊗ (y + z) = x⊗ y + x⊗ z.
3. Orthogonality: cos(x⊗ y1,x⊗ y2) ≈ 0.
where cos(·, ·) is the cosine similarity between two hyper-
vectors, and y1 and y2 are approximately orthogonal. In
the context of real hypervectors, element-wise multiplica-
tion and circular convolution are two commonly-used bind-
ing operations. One can easily verify the three properties
above. Element-wise multiplication is computationally more
efficient but less robust in orthogonality than circular con-
volution. Nonetheless, both operations are differentiable, so
they can be seamlessly incorporated into neural networks.
HDC Encoder Building upon the basic elements mentioned
above, some works have designed HDC encoders for spe-
cial data types, such as MNIST-style images (Kleyko et al.
2016; Manabat et al. 2019), trigrams (Alonso et al. 2021),
and graphs (Nunes et al. 2022). However, the existing en-
coders have mainly been used for data compression and re-
construction. Few HDC encoders can be plugged into deep
neural networks.

Methodology
In this section, we introduce the fusion of images and their
visual attributes by adopting the binding operation from
HDC. We elaborate: (a) the relation between symbolic op-
erations and set operations; (b) how to encode attributes into
embedding vectors using symbolic operations; (c) how to
fuse the image encoding with the attribute encoding. Fig. 1
illustrates the fusion of images with their extracted/ground-
truth visual attributes using our novel fusion technique.

Symbolic operations v.s. Set operations
Three symbolic operations can be applied to hypervectors:
superposition (·+ ·), binding (· ⊗ ·), and subtraction (· − ·).
Three set operations can be applied to sets: union (· ∪ ·), in-
tersection (· ∩ ·), and set difference (·\·). We argue that there
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Figure 2: Disentangled structure of attributes. Thanks to the structure, the attributes of an object can be written as the intersection
of union of some atomic properties. The corresponding attribute embedding can be obtained by directly translating the set
operations to symbolic operations.

is a strong correspondence between symbolic operations and
set operations. A similar argument can also be found at Fur-
long and Eliasmith (2022).

Before introducing the correspondence, we first state the
premise: the set to be represented must be the intersection of
a disjoint union of some atomic sets. In other words, the set
should be disentangled into different independent compo-
nents, where each component consists of finitely-many dis-
joint elements. Fig. 3 illustrates what sets satisfy the premise
and what do not. Though it is not obvious why the premise
is necessary at first glance, please allow us to introduce the
correspondence, and then we will explain the premise in the
last paragraph of this section.

First, hypervectors correspond to atomic sets. This is be-
cause hypervectors are almost always orthogonal to each
other, the neighbor of one hypervector is not likely to be
the neighbor of another hypervector. So it is appropriate to
use hypervectors to represent atomic sets because atomicity
requires each atom to be independent and orthogonal.

Second, superposition corresponds to disjoint union. The
superposition of two hypervectors is close to both vectors, so
the neighbor of the superposition is also the neighbor of the
two hypervectors. Thanks to this property, we can represent
the disjoint union of atomic sets within each independent
component. Per the illustration in Fig. 3, we can represent
A1 ∪ A2, B1 ∪ B2, etc.. But we cannot represent A1 ∪ B1

because they belong to different components and they are
not disjoint.

Third, binding corresponds to intersection. Since the bind-
ing of two hypervectors is orthogonal to both vectors:
cos(x,x⊗ y), cos(y,x⊗ y) ≈ 0, this means x⊗ y points
to a mysterious address in the huge hyper-dimensional space
unknown to either x or y. Both x and y must be known to
reach the address pointed by x ⊗ y. Therefore, x ⊗ y rep-
resents the intersection relation. Thanks to this property, we
can encode the intersection of sets across different compo-
nents. Per the illustration in Fig. 3, we can represent A1∩B1,
(A1 ∪A2) ∩B1, etc.. But we cannot represent A1 ∩A2 be-
cause the atomic set within each component is disjoint.

Fourth, subtraction corresponds to set difference. The
subtraction of two hypervectors is close to the minuend and

Figure 3: Illustration of the representable sets through HDC
symbolic operations. The set to represent must be written as
the intersection of disjoint union of some atomic sets. For
example, the green set can be represented through the sym-
bolic operations while the red set cannot.

far from the subtrahend: cos(x−y,x) > 0, cos(x−y,y) <
0. So the neighbor of x−y is likely to be the neighbor of x,
but not likely to be the neighbor of y.

Now we answer the necessity of the premise. Notice that
only binding distributes over superposition (which coincides
with the correspondence), but superposition does not dis-
tribute over binding (which does not coincide with the cor-
respondence):{

X ∩ (Y ∪ Z) = (X ∪ Z) ∩ (Y ∪ Z)

X ⊗ (Y + Z) = (X + Z)⊗ (Y + Z){
X ∪ (Y ∩ Z) = (X ∩ Z) ∪ (Y ∩ Z)

X + (Y ⊗ Z) ̸= (X ⊗ Z) + (Y ⊗ Z)

Therefore, the correspondence does not hold when there
exists a union of intersections. So we assume the atomic
sets within each independent components must be disjoint
to avoid the possibility of intersection within each compo-
nent. On the other hand, we assume the set should be fac-
torized into independent components. This is because the
intersection-binding correspondence relies on the orthogo-
nality property of binding, and the orthogonality property



works the best when the two input vectors are orthogonal.
The assumption of independence is to ensure the effect of
binding.

Attribute Encoder
First, we argue that the combination of attributes can be writ-
ten as the intersection of the disjoint union of some atomic
attributes. Attributes can be disentangled into different inde-
pendent components, as illustrated in Fig. 2. The attributes
within each component are disjoint. For example, a red ob-
ject cannot be green and vice versa. Besides, intersections
of attributes across the components are possible. For exam-
ple, round and red, round and green, square and red, and
square and green are all possible attributes. Therefore, com-
binations of attributes satisfy the premise imposed by the
HDC encoding.

With the validation of the premise, the attribute en-
coding can be easily obtained by directly translating
the set operations to symbolic operations. For example,
(blue OR green) AND round can be expressed as (blue +
green)⊗ round.

Fuse Images and Attributes
After obtaining the image embedding f(x) and attribute em-
bedding c, their joint embedding can be obtained by binding
the two embeddings. This can be understood in two ways: 1)
The binding operation is modeling intersection, so f(x)⊗ c
is modeling the joint distribution of images and attributes
f(x∩c). 2) f(x)⊗c can be viewed as moving the image em-
bedding f(x) to a new sub-space navigated by the attribute
embedding c. So the fusion can be viewed as a conditional
relation f(x|c). Nonetheless, the two interpretations are uni-
fied because of the relation: f(x|c) = f(x∩c)

f(c) ∝ f(x ∩ c).
Thanks to the distributed property (linearity) of binding, the
disentangled structure of attributes is preserved in its embed-
ding space.

In addition, to use binding to fuse the two embeddings, we
can also encode the combined attributes as a longer vector,
reshape it into a matrix and multiply it with the image em-
bedding. Since the matrix multiplication is also linear like
the binding operation, the structure of the attributes is also
preserved. The benefit of doing this is to increase the robust-
ness of attribute encoding. Since a matrix has more elements
than a vector, its capacity is higher and can encode the com-
bination of more attributes. As a trade-off, it also requires
more computation.

Experiments
Comparison Settings
Throughout all the experiments, we consider the following
fusing techniques, where binding (Hadamard) and binding
(Matmul) are our novel fusing techniques. To make the com-
parison fair, all fusing architectures have roughly the same
number of learnable parameters.
no attribute The image encoding is fed to a fully-connected
layer for classification, without fusing with the attributes.
masking After the probability of each object class is com-
puted, the probability of the impossible classes are masked

as zero. Masking is only applicable for super-class attributes
and not applicable for instance-level attributes.
score concat The score for each attribute is concatenated
with the image encoding and then fed to a multi-layer per-
ceptron.
feature concat The score for each attribute is first fed to
a multi-layer perceptron to extract the attribute encoding.
Then the attribute encoding is concatenated with the image
encoding and fed to a fully-connected layer.
binding (Hadamard) Attributes are encoded into a hyper-
vector by our novel attribute encoder. The attribute encoding
is fused with the image encoding by the element-wise mul-
tiplication.
binding (Matmul) The attributes are encoded into a longer
hypervector by our novel attribute encoder. The long hyper-
vector is reshaped into a matrix and multiplied with the im-
age encoding.

Experiment 1: Fuse with Super-Class Attributes
Dataset CIFAR100 (Krizhevsky, Hinton et al. 2009) con-
tains 60k 32-by-32 images divided into 100 classes. It also
has an official super-class annotation, where the 100 classes
are divided into 20 super-classes. In the evaluation, we fuse
the images with their super-class and classify the images.
What we call a super-class refers to ontology (i.e. aquarium
fish, flatfish, ray, shark, trout are fish), and is a special form
of attributes because of its one-to-many structure, where all
instances in a class are mapped to the same super-class.

Discussion Table 1 shows the result of the experiment.
The masking pipeline is applicable in this context because
of the one-to-many structure. Theoretically, masking gives
the best performance and we compare other fusing tech-
niques against the theoretical upper bound given by mask-
ing. Feature concatenation and binding all achieve the same
performance as masking when the super-class is correctly
provided. To see how robust each technique is against noisy
attributes, we performed two additional comparisons: the
noisy setting unions another random super-class with the
correct one, the uniform setting unions all the super-classes.
Experiments demonstrate that our fusing technique can
achieve the optimal accuracy under all settings, while score
concatenation and feature concatenation perform slightly
worse in some settings.

Implementation We use ResNet-18 as our image encoder
and a multi-layer perceptron as the classifier. We train the
whole network from scratch. During training, the image is
randomly cropped to 28-by-28 pixels. During testing, the
image is centered and cropped to 28-by-28 pixels. We train
the model for 1000 epochs using a learning rate of 0.1 and
momentum of 0.9 and weight decay of 5e-5.

Experiment 2: Fuse with Instance-Level Attributes
Dataset Imagenet with Attributes (Russakovsky and Fei-
Fei 2010) is a subset of the Imagenet dataset that contains
9600 images with average size of 256-by-256 pixel from 384
synsets. The dataset has 25 instance-level human annotated
attributes, where the attributes span color, shape, texture and
pattern. In the evaluation, we will fuse the images with their



correct noisy uniform
no attribute 77.4%
masking 86.4% 84.9% 77.4%
score concat 79.0% 77.6% 77.2%
feature concat 86.5% 84.6% 76.5%
binding (Hadamard) 86.6% 84.9% 77.1%
binding (Matmul) 86.4% 84.9% 77.4%

Table 1: Classification accuracy on CIFAR100 when fusing
images with their super-classes. correct means the fused at-
tribute is accurate. noisy means the fused super-class is the
union of the correct super-class and another random one.
uniform means the fused super-class is the union of all super-
classes.

correct predicted uniform
no attribute 68.3%
score concat 72.8% 66.8% 68.3%
feature concat 83.0% 68.9% 67.6%
binding (Hadamard) 86.1% 71.2% 67.3%
binding (Matmul) 86.3% 71.2% 68.3%

Table 2: Classification accuracy on Imagenet-with-attributes
dataset, where images are fused with the instance-level at-
tributes. correct means the fused attributes are ground-truth
attributes. predicted means the fused attributes are generated
by an attribute predictor. uniform means that all the attributes
are uncertain.

attributes and predict the synsets. In addition to using the
human annotated attributes, we also evaluate the fusion with
predicted attributes using the VAW network of Pham et al.
(2021). The VAW network takes in an image and produces
confidence scores for 620 attributes. Out of these, we only
utilize the 25 attributes defined in Russakovsky and Fei-Fei
(2010). During development 85% of the data is used as the
training set and the remaining 15% is used as the test set.

Discussion Table 2 shows the accuracy comparison. It
demonstrates that our novel fusing technique generally out-
performs other techniques. In a more realistic setting (i.e.
the predicted column), an attribute predictor can enhance the
image classifier by 2.9% in this experiment, while the fea-
ture concatenation only provides extra 0.6%. Besides, the
Hadamard fusion is slightly worse than the Matmul fusion.
The reason may be that the Hadamard fusion uses fewer
dimensions for attribute encoding, so the attribute encod-
ing may be lost. Nevertheless, the capacity problem can be
solved by using the Matmul fusion.

Implementation We adopt the official pretrained ResNet-
152 network provided by PyTorch and freeze all the con-
volutional layers. We train the fused models for 100 epochs
using a learning rate of 0.1, momentum of 0.9 and weight
decay of 5e-5. To make the comparison fair, we make each
fusing architecture equipped with roughly the same number
of learnable parameters, and all the experiments are run with
the same training hyper-parameters. Since the ResNet152
network is pretrained on 1000 commonly used synsets,

Figure 4: Training curve of the image classification using
different fusion techniques. In the first 100 epochs, 25 at-
tributes are fused with the images. Starting from the 100-th
epochs, another 15 attributes are added in.

where only about 70 synsets overlap with the 384 synsets,
this experiment is under the setting of transfer learning.

Experiment 3: Adding New Attributes On-the-Fly
In this experiment we test how the technique performs when
new attributes are added. Using the same 9600 imagenet im-
ages, we first train the models for 100 epochs with the 25
predicted attributes used in Experiment 2. The setup and
hyperparameters are the same. Then we add in 15 new at-
tributes and see how quickly each architecture learns to fuse
the new attributes. The network was then trained for another
100 epochs. We plot the training curve in Fig. 4.

Discussion Referring to Fig. 4, our novel fusing tech-
niques train significantly faster than the other techniques and
achieve higher accuracy after convergence. After adding in
new attributes, all the fusion techniques experience a perfor-
mance drop, but our novel techniques recover more quickly.
Comparing the Hadamard fusion and the Matmul fusion,
Hadamard fusion recovers faster because it uses less dimen-
sions for attribute encoding. But the final accuracy achieved
by both fusion techniques does not differ significantly.

Ablation Study 1: Learnable Embedding
We study whether learning the attribute embedding is nec-
essary in the fusion pipeline. Table 3 shows that learning
the attribute can bring 2.8% and 1.0% performance gain
for Hadamard fusion and Matmul fusion, respectively. It
demonstrates that our novel attribute encoder works better
when the attribute embedding is learnable, but also works
well even without any training.

Besides, the performance gap of the Matmul fusion is
smaller than the Hadamard fusion. The reason may be that
the Matmul fusion has higher dimension in the attribute en-
coding, so the attribute encoding has smaller noise and hence
the fusion is more accurate.



attribute embedding
Fixed Learned

binding (Hadamard) 83.3% 86.1% (+2.8%)
binding (Matmul) 85.3% 86.3% (+1.0%)

Table 3: Comparison between fixing v.s. learning the at-
tribute embedding during training.

attribute structure
flat disentangled

binding (Hadamard) 85.1% 86.1% (+1.0%)
binding (Matmul) 83.3% 86.3% (+3.0%)

Table 4: Effect of imposing the disentangled structure of
attributes when encoding attributes. flat means all the at-
tributes independent. disentangled means the attributes are
disentangled into color, shape, texture and pattern.

Ablation Study 2: Effect of Disentangled Structure
We also explore the benefit of disentangling attributes into
independent components. Table 4 shows that imposing the
disentangled structure in the attribute encoding boosts the
performance by 1.0% and 3.0%. On one hand, the Matmul
binding with a flat attribute structure is worse for the flat
attribute structure. The reason may be that the flat attribute
structure makes the fusion harder to train for the Matmul
fusion that has a higher dimension in the attribute encod-
ing, and this leads to lower accuracy. On the other hand, the
introduction of the attribute hierarchy resolves the problem
and even makes the Matmul performance higher than that of
Hadamard.

Ablation Study 3: Fusing with Noisy Attributes
We add artificial noise to the attributes and test how the per-
formance changes as the noise level changes. During testing,
the attributes are flipped with a certain probability (i.e. the
error rate). Table 5 shows that our fusing techniques perform
better than the others when the error rate is low. When the er-
ror rate is higher, the feature concatenation technique works
better. It may be because the feature concatenation has more
non-linear structure in the data fusion, so the attributes may
interfere less with the image classification. For the binding
fusion, the attribute encoding affects the image classification
directly, so it is more sensitive to the attribute errors.

Related Work
Hyper-Dimensional Computing
The standalone HDC framework has been used to solve
some simple learning problems with higher speed (Imani
et al. 2019; Joshi, Halseth, and Kanerva 2016; Rahimi, Kan-
erva, and Rabaey 2016; Imani et al. 2018). But there has
not been any success in making HDC achieve performance
comparable to those of neural networks in more complicated
problems, e.g. imagenet classification. Therefore, there has
been several (but not many) works adopting HDC in modern
deep learning (DL) technology to gain mutual benefit from
HDC and DL. Here we enumerate some of them.

attribute error rate
0% 5% 10% 15% 20%

no attribute 68.3%
score concat 72.8% 72.7% 72.6% 72.3% 72.3%
feature concat 83.0% 82.2% 81.0% 79.4% 77.5%
binding (Hadamard) 86.1% 83.1% 81.0% 78.2% 75.3%
binding (Matmul) 86.3% 84.1% 81.3% 79.0% 76.1%

Table 5: Performance change of fusion techniques under dif-
ferent levels of attribute noise. The attributes are flipped with
a certain probability, i.e. the attribute error rate.

First, neural networks can accept hypervectors (HVs)
as inputs. Bandaragoda et al. (2019); Mirus et al. (2019);
Mirus, Stewart, and Conradt (2020) encode inputs of vari-
able size into HVs. Ma et al. (2018) encodes knowledge
graphs into HVs. Karlgren and Kanerva (2019) encode sen-
tences into HVs. The HVs have fixed length and can be fed
to a deep neural network, but the performance is not guar-
anteed. Second, neural networks can be trained to produce
HVs. Yilmaz (2015); Neubert et al. (2021) use the activa-
tions of CNNs to form the HVs of images. Mitrokhin et al.
(2020) use a deep quantization network (Yue et al. 2016) to
form bipolar HVs. Mitrokhin et al. (2020); Neubert et al.
(2021); Sutor et al. (2022) combine the activations of differ-
ent lengths from multiple neural networks using HDC tech-
niques and improve the results in applications.

This paper is another attempt to adopt HDC in deep neu-
ral networks (DNNs), specifically using HVs as the input
to a DNN. But there are several characteristics that make
this paper unique: 1. Previous works view HVs simply as
embeddings and use them as the input/output of a neural
network. This paper uses HVs as transformations (through
binding) which can model conditional relations and bias the
prediction of the neural network. 2. In previous work, the
HDC encoder is separated from the DNN and the training of
the DNN is independent of the HDC encoder. For example,
the work of Karlgren and Kanerva (2019) encodes sentences
into HVs and uses them as the inputs to a neural network.
But the sentence encoding is fixed and not learnable. In our
paper, HDC is responsible for disentangling the context, and
the DL module can be applied to learn the embedding under
the regularization of the HDC module. Such design enables
end-to-end training of all the parameters in the system and
enhances the performance of the whole system.

Data Fusion in Neural Network
In many applications, neural networks are used to process
inputs from more than one resource. For example, images
from different views (Ding and Tao 2015; Guo et al. 2016;
Yan et al. 2020), images and texts (reviewed in the next para-
graph), images and geological information (reviewed in the
next paragraph). The input resources can be divided into
two categories: 1. raw data, e.g. images, raw texts, videos,
sounds; 2. structured data, e.g. parsed texts, geological infor-
mation. Fusing raw data usually is achieved with data-driven
approaches since it is hard to manually encode raw data into
structured forms, as surveyed in Wang (2021). Fusing raw
data with structured data usually has more flexibility be-



cause better encoding schemes and fusing strategies can be
designed to fit the structured data and make the neural net-
work train faster and achieve higher performance. Our paper
belongs to the latter category. In the next two paragraphs,
we will restrict the literature review to fusing raw data with
structured data. The first paragraph focuses on the encoding
of the structured data. The second paragraph focuses on the
fusion of the two sources of data.

Yang et al. (2018); Wei et al. (2016); Tu et al. (2020);
Wang, Yang, and Meinel (2015); Jiang and Li (2017); Song
et al. (2018) fuse images and texts, where the text features
are extracted based on the bag of word (BoW) representa-
tion and the extracted text features are processed by fully-
connected layers. Tang et al. (2015); Guo et al. (2018);
Salem, Workman, and Jacobs (2020) fuses images and ge-
ological information (where the image was taken), where
the geological information is used to retrieve the geologi-
cal statistics, which are processed by fully-connected layers.
Christie et al. (2018); Minetto, Segundo, and Sarkar (2019)
fuses satellite images with their meta information, where the
meta information is encoded by fully-connected layers.

As summarized by Iv, Kapoor, and Ghosh (2021), al-
most all data fusion techniques use concatenation or deep
merge. For concatenation, inputs from different resources
are concatenated to form a single feature vector. This tech-
nique is usually used when the input data consists of raw
features, class likelihood scores, or neural network interme-
diate outputs. For deep merge, the raw features are trans-
formed by some fully-connected layers, and the transformed
features are concatenated and transformed, again by some
fully-connected layers. This technique is data-driven and has
more learnable parameters, but the structure within the input
resources is disrupted. All the works mentioned above use
one of the two techniques.

In this paper, we fuse images and attributes, where at-
tributes have disentangled structure. Unlike previous works
which do concatenation or deep merge, this paper proposes a
novel fusing technique that preserves the disentangled struc-
ture through the binding operation. The structure-preserving
fusion enables more efficient training of neural networks and
achieves higher accuracy. The methodology is not restricted
to attribute encoding and can be applied to other structured
data without much modification.

Conclusion

We present an efficient attribute encoder that requires very
few or even no learnable parameters to train. We also present
a fusing pipeline of combining the image encoding and the
attribute encoding. We apply the fusion technique to en-
hance image classification, where we find that the accuracy
and the transferability of an image classifier can be improved
by fusing it with a pre-trained attribute extractor. We evalu-
ated the fusion technique extensively, where the settings in-
clude transfer learning and online learning. This technique
achieves better performance in the task of image classifica-
tion, is more resilient to noise, and is more adaptive to new
information compared to conventional methods.
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