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Abstract

Deep Neural Networks (DNNs) have achieved tremendous
success in various tasks. However, DNNs expose uncertainty
and unreliability against well-designed adversarial examples,
thus leading to misclassification. Accordingly, a collection of
methods have been proposed to improve the robustness of
DNNs by detecting adversarial attacks. In this paper, we com-
bine model explanation techniques and adversarial models,
aiming to improve adversarial detection in real-world scenar-
ios. Specifically, we develop a novel adversary-resistant de-
tection framework called EXPLAINER by utilizing the inter-
pretation results extracted from explainable learning models.
The explanation model in EXPLAINER produces an expla-
nation map identifying the relevance of input variables in the
model’s classification result. consequently, the adversarial ex-
ample can be effectively detected by comparing the explana-
tion results of a given sample and its denoised version, with-
out referring to any prior knowledge of attacks. The proposed
framework is thoroughly evaluated on different adversarial
attacks. The experimental results show that the proposed ap-
proach achieves promising results in white-box attacks.

Introduction
Deep Neural Networks (DNNs) have been widely used in
various applications and achieved tremendous success in re-
cent years. For instance, DNNs have achieved state-of-the-
art performance in a variety of generative and discriminative
learning tasks, including image processing (Du et al. 2019),
speech recognition (Maas et al. 2017), drug discovery (Chen
et al. 2018), and genomics (Talukder et al. 2021). However,
studies have shown that outputs of DNNs can be easily al-
tered by a small perturbation of the input, or even a small
perturbation of one pixel (Zhou, Agrawal, and Manocha
2022; Su, Vargas, and Sakurai 2019; Vargas and Su 2019).
This sensitivity to small changes in the input makes DNNs
vulnerable, limiting the applications of DNNs in high-stake
settings, such as self-driving cars (Deng et al. 2020) and mal-
ware detections (Sewak, Sahay, and Rathore 2018).

Several approaches for defending against adversarial ex-
amples have been proposed. The use of adversarial training
or gradient masking to improve the robustness of neural net-
works is one area of research. Existing research has shown,
however, that neural network architectures modified with ad-
versarial training and gradient masking can still be attacked

Figure 1: Examples of the feature maps extracted from a nor-
mal example, a denoised normal example, an adversarial ex-
ample, and a denoised adversarial example. After the noise
reduction process, the feature map of the normal example
has almost no change, while the feature map of the adver-
sarial image has obvious changes on both the background
and object.

(Carlini and Wagner 2017). Another area of study is adver-
sarial detection, which aims to determine if a given input is
adversarial or normal.

However, there are critical questions remain unanswered
about what causes the misclassification of adversarial ex-
amples. To uncover the causes of adversarial attacks, ef-
forts have been tried to explore the feature differences be-
tween normal inputs and adversarial inputs. One possible
method is using explanation techniques. Given an image,
the result from an explanation model encodes the relevance
of pixels for the prediction result, which is commonly re-
ferred to as an explanation map. Fig 1 shows that there are
human-understandable differences between adversarial ex-
amples and normal inputs with Integrated Gradient (Sun-
dararajan, Taly, and Yan 2017). As we can see, normal ex-



Figure 2: Examples of the feature maps extracted from a nor-
mal example and an adversarial example with patch attack.

amples tend to have a more meaningful and continuous ex-
planation map, while adversarial examples tend to have a
more discrete explanation map. This difference is more dis-
tinguishable while using a patch attack (Brown et al. 2017).
The model will be fooled and classify the image only based
on the adversarial patch part. As we could see from the Fig 2,
the interpretation of the adversarial example only shows the
shape of the adversarial patch.

As a result, the inconsistencies of extracted features
between adversarial examples and normal examples can
be utilized in detecting adversarial examples. Song et
al. (Song et al. 2018) proposed an Ensemble approach for
Explanation-based Adversarial Detection, which uses an en-
semble of explanation models wherein each explanation
technique provides an explanation map for every classifica-
tion decision made by a target model. However, their frame-
work requires additional training after extracting the expla-
nation maps.

In this work, we propose an unsupervised adversarial de-
tection method (EXPLAINER) with model explanation. We
extract feature maps from explanation models and use the
extracted features to determine if an example is normal or
adversarial. We evaluate EXPLAINER using five state-of-
the-art adversarial attacks on MNIST (LeCun et al. 1998)
dataset and ImageNet (Deng et al. 2009) dataset, under
white-box threat model. Our experimental results show that
we can effectively detect all attacks with fast responses.

We summarize our main contributions as follows.

• We develop a novel framework called EXPLAINER
based on model interpretation techniques and noise re-
duction. EXPLAINER utilizes features from the inter-
pretation results using normal examples and adversarial
examples without additional training tasks.

• We evaluate EXPLAINER on five state-of-the-art adver-
sarial attacks and two image datasets under white-box
threat model. The results show that the proposed system
can consistently achieve high detection rates with a low
false-positive rate.

• We extensively evaluate EXPLAINER with different
clustering techniques. Our findings show that EX-
PLAINER achieves promising results and high efficiency
in different scenarios.

Related Work
Adversarial Attack. A number of strategies for devel-
oping adversarial examples have been developed. One is
Gradient-based attacks (Carlini and Wagner 2017; Good-
fellow, Shlens, and Szegedy 2014; Szegedy et al. 2013),
which leverage gradient-based optimizations to imitate real-
world circumstances. The other one is content-based at-
tacks(Brown et al. 2017; Eykholt et al. 2018), which use
perturbations based on the semantics of the input content
to simulate real-world scenarios. We focus on five state-
of-the-art gradient-based attacks for neural network clas-
sifiers in this paper, including the Basic Iterative Method
(BIM) (Kurakin et al. 2018), Momentum Iterative Method
(MIM) (Dong et al. 2018), and Carlini and Wagner Attacks
(CW) (Carlini and Wagner 2017) tailored to L0, L2, and L∞
norms.

Model Explanation. Model explanation provides impor-
tant insight into the features that are critical to decision-
making process of the underlying DNNs. We concentrate
on explaining the output of DNN models for a given input
using local explainability methods (Baehrens et al. 2009;
Lipton 2018). These methods discover which regions in
an input image are primarily responsible for the prediction
outcome in computer vision models. A saliency map (Si-
monyan, Vedaldi, and Zisserman 2013), or an explanation
map (Dombrowski et al. 2019) more broadly, is a common
name for the explanation result.

Adversarial Detection. Adversarial detection is a defense
approach with the goal of building a classifier g with a binary
output y ∈ {0, 1}, where labels 0 and 1 denote that the in-
put instance is normal or adversarial, respectively. Meng and
Chen proposed Magnet (Meng and Chen 2017), which uses
autoencoders to learn to approximate the manifold of nor-
mal examples. Another strategy, known as Feature Squeez-
ing (Xu, Evans, and Qi 2017), recommends reducing an ad-
versary’s degree of freedom by smoothing images or reduc-
ing their color depth. Noise Reduction is also one of the ap-
proaches to get identify adversarial samples. Adaptive Noise
reduction (Liang et al. 2018) is used and achieved high ac-
curacy by combining scalar quantization and spatial smooth-
ing.

Proposed Method
EXPLAINER is a framework that detects adversarial exam-
ples based on the features from the model interpretation re-
sults. Our hypothesis is that the explanation robustness for
the normal examples may not be consistent with the adver-
sarial examples. Fig 3 shows the proposed framework. Given
a normal or adversarial example, the first step is using ex-
planation techniques to generate the explanation map from
the examples. The next step is using image-denoising tech-
niques to get the denoised version of the example. Then, we
apply the same explanation techniques on the denoised im-
age again to get the explanation maps. Finally, we compare
the difference in Shannon entropy between the explanation
maps for the original image and the denoised image as a
classifier to finalize the adversarial detection process. The



Figure 3: Illustration of the training process of the proposed
framework.

details for generating adversarial attacks, generating expla-
nation maps, extracting features, image denoising, and cal-
culating Shannon entropy will be introduced in the following
sections.

Generation of Adversarial Attacks
The goal of an adversary is to craft a sample that looks iden-
tical to a normal sample but is misclassified by the target
model. In the context of image classification, this process
amounts to finding a small perturbation that, when added to
a normal image, causes the target model to misclassify the
sample, but remains correctly classified by the human eye.
For a given input image x, the goal is to find a minimal per-
turbation η such that the adversarial input x̃ = x + η is
misclassified. We consider the following adversarial attacks
for testing our framework.

Basic Iterative Method (BIM) (Kurakin et al. 2018):
Basic Iterative Method is the iterative version of FGSM
(Goodfellow, Shlens, and Szegedy 2014). Instead of merely
applying adversarial noise η once with one parameter ϵ, ap-
ply it many times iteratively with small ϵ. This gives a recur-
sive formula:

x∗
0 = xx∗

i = clipx,ϵ

(
x∗
i−1 + ϵsign

(
∇x∗

i−1
J
(
Θ, x∗

i−1, y
)))
(1)

Here, clipx,ϵ(·) represents a clipping of the values of the
adversarial sample such that they are within an ϵ neighbor-
hood of the original sample x. This approach is convenient
because it allows extra control over the attack. The adversar-
ial example in Fig 4 is generated by this method.

Momentum Iterative Method (MIM) (Dong et al.
2018): The momentum method is a technique for accelerat-
ing gradient descent algorithms by accumulating a velocity
vector in the gradient direction of the loss function across it-
erations. To generate a non-targeted adversarial example x∗

from a real example x, which satisfies the L∞ norm bound,
gradient-based approaches seek the adversarial example by
solving the constrained optimization problem

∗argminx∗J (x∗, y) , s.t. ∥x∗ − x∥∞ ≤ ϵ, (2)

where ϵ is the size of adversarial perturbation.
Carlini and Wagner Attacks (CW) (Carlini and Wag-

ner 2017): The Carlini Wagner attacks are some of the
strongest white-box attacks. Consider an input image x and
hyperparameter c, the Carlini-Wagner L2 attack finds a per-
turbation δ∗ for the following optimization problem:

∗min∥δ∥22 + c · f(x+ δ)s.t.x+ δ ∈ [0, 1]n (3)

Generation of Explanation
Given a neural network classifier f(·) and an input x, the
explanation of the classification is represented as an expla-
nation map denoted by h : Rd → Rd. The explanation
map h(x) encodes the relevance score of every pixel in x for
the neural network’s prediction. We consider the following
explanation generation techniques for our proposed frame-
work and the corresponding generated explanation maps are
shown in Fig 4. The explanation maps are mainly generated
through Captum (Kokhlikyan et al. 2020).

DeepLift (Shrikumar, Greenside, and Kundaje 2017):
DeepLift (Deep Learning Important FeaTures) is a method
for decomposing the output prediction of a neural network
on a specific input by backpropagating the contributions of
all neurons in the network to every feature of the input. It
attributes to each input xi a value C∆xi∆y that represents the
effect of that input being set to a reference value as opposed
to its original value. DeepLIFT uses a ”summation-to-delta”
property that states:

n∑
i=1

C∆xi∆o = ∆o, (4)

where o = f(x) is the model output, ∆o = f(x) −
f(r),∆xi = xi − ri, and r is the reference input.

SHAP (Lundberg and Lee 2017): SHAP (SHapley Ad-
ditive exPlanations) is a unified framework for interpreting
predictions. The goal of SHAP is to explain the prediction of
an instance x by computing the contribution of each feature
to the prediction. The SHAP explanation method computes
Shapley values from coalitional game theory. SHAP speci-
fies the explanation as:

g (z′) = ϕ0 +
M∑
j=1

ϕjz
′
j (5)

where g is the explanation model, z′ ∈ {0, 1}M is the coali-
tion vector, M is the maximum coalition size and ϕj ∈ R is
the feature attribution for a feature j, the Shapley values.

Grad-CAM and Guided CAM (Selvaraju et al. 2016):
Grad-CAM computes a coarsegrained feature-importance
map by associating the feature maps in the final convolu-
tional layer with particular classes based on the gradients
of each class w.r.t. each feature map, and then using the
weighted activations of the feature maps as an indication
of which inputs are most important. To obtain more fine-
grained feature importance, the authors proposed perform-
ing an elementwise product between the scores obtained
from Grad-CAM and the scores obtained from Guided
Backpropagation, termed Guided Grad-CAM.
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Figure 4: Generation of Attacks and Explanation.

IG (Sundararajan, Taly, and Yan 2017): IG (Integrated
Gradients) computes the gradients at all points along a linear
path from a baseline x̄ to x, and averages them [46]. The
baseline x̄ can be defined by the user and is generally chosen
as a black image. Formally,

h(x) = (x− x̄)⊙
∫ 1

α=0

∂f(x̄+ α(x− x̄))

∂x
dα (6)

SmoothGrad (Smilkov et al. 2017): SMOOTHGRAD is
a simple method that can help visually sharpen gradient-
based sensitivity maps, and it discusses lessons in the vi-
sualization of these maps. It creates noisy copies of an input
image then averages gradients (or another saliency method)
with respect to these copies. This often sharpens the result-
ing saliency map and removes irrelevant noisy regions.

Image Noise Reduction and Shannon Entropy
Fig 1 and Fig 4 show that the generated explanation map for
normal, adversarial examples and their corresponding de-
noised versions are significantly different regardless of the
explanation technique we used. This motivates us to transfer
the problem of adversarial detection into finding a suitable
entropy classifier. In the adversarial attacks settings, given
the scenarios that adversarial examples are mixed with nor-
mal examples, can we automatically detect the adversarial
samples by calculating the change of Shannon entropy be-
tween the original and denoised versions when the ground
truth of the number and type of attacks are absent? We advo-
cate a two-step approach where image denoising and Shan-
non entropy are decoupled. First, a non-Local means of de-
noising (Buades, Coll, and Morel 2011) is employed to ob-
tain the denoised images. Second, we calculate the Shannon
entropy for both the original image and its denoised version.

Non-local means denoising is based on a simple principle:
replacing the color of a pixel with an average of the colors
of similar pixels. It writes

NLu(p) =
1

C(p)

∫
f(d(B(p), B(q))u(q)dq,

where d(B(p), B(q)) is an Euclidean distance between im-
age patches centered respectively at p and q, f is a decreas-
ing function and C(p) is the normalizing factor.

Shannon entropy is named after Boltzmann’s H-theorem,
Shannon defined the entropy H of a discrete random variable
X , which takes values in the alphabet X and is distributed
according to p : X → [0, 1] such that p(x) := P [X = x] :

H(X) = E[I(X)] = E[− log p(X)]

We choose the scikit-image (Van der Walt et al. 2014) for
calculating the Shannon entropy for the images.

Experiment
Dataset
We evaluated the performance of our detection framework
on MNIST (LeCun et al. 1998) and ImageNet (Deng et al.
2009). On MNIST datasets, we trained a CNN-based target
model with 60000 examples in the training set and 10000
examples in the validation set. For Imagenet, we trained the
CNN-based target model with 50000 examples in the train-
ing set and 10000 examples in the validation set. On Ima-
geNet dataset, we use a pre-trained ResNet model (He et al.
2016) and tested our proposed framework on 50000 images.

Implementation Details
As described in section , we generate adversarial exam-
ples from the testing dataset using five state-of-the-art at-
tacks: BIM (Kurakin et al. 2018), MIM (Dong et al. 2018),
and CW (Carlini and Wagner 2017) tailored to L0, L2, and
L∞ norm. Moreover, we generate explanation maps, as de-
scribed in section , using Deeplift (Shrikumar, Greenside,
and Kundaje 2017), SHAP (Lundberg and Lee 2017), Grad-
CAM (Selvaraju et al. 2016), IG (Sundararajan, Taly, and
Yan 2017), and IG with SmoothGrad (Smilkov et al. 2017).
THe last step is to compare the difference between the orig-
inal image’s Shannon entropy and the denoised image’s
Shannon entropy. Entropy could measure the information
the feature map carries. The denoising operation could sep-
arate the normal and adversarial examples well. If the en-
tropy decreases after denoising, the image will be classified



as a normal image. Otherwise, it will be considered as an
adversarial image.

Model Evaluation
In this section, we thoroughly evaluate the effectiveness of
EXPLAINER in different scenarios and extensively com-
pare its performance.

AdversarialNormal

Figure 5: Shannon entropy comparison between the normal
group and adversarial group with different types of explana-
tion method

Explanation Methods We evaluate the Shannon entropy
values from different explanation techniques in Fig 5. We
compared three explanation techniques here: gradient, in-
tegrated gradients, and Deeplift. Both integrated gradients
and Deeplift show significant entropy differences among the
normal and adversarial groups. Here the results show that
the recent explanation techniques could generate explana-
tion maps that capture the noise information noise and could
be used for adversarial detection.

Different Adversarial Attacks . We evaluate the distri-
bution of extracted features from different attack techniques
in Fig 6. We generate five state-of-art attacks and apply the
integrated gradient to generate explanation maps. Fig 6 pro-
vide the entropy values. As we could see, all of the attacks
could have a significant entropy difference compared to the
normal group.

Comparison of Detection Rate .
The detection rate of EXPLAINER is provided in Ta-

ble 1.Table 1 compares the performance of EXPLAINER
with Magnet (Meng and Chen 2017) and FS (Xu, Evans,
and Qi 2017) on MNIST with five state-of-art attack meth-
ods. As shown in Table 1, we get around 99% detection rates
on MNIST dataset. We could also get a similar detection rate
on ImageNet dataset against adversarial patch attacks. Com-
pared to other detection methods, our proposed framework
is efficient and accurate. When using noise reduction for ad-
versarial detection, some models need to retrain the origi-
nal network (Xu, Evans, and Qi 2017), while others need
to train a denoising model with VAE(Meng and Chen 2017)
or GAN (Meng and Chen 2017). Through the framework
we designed, we can avoid this step of retraining and pro-
vide a clear and visible explanation of how to be attacked

from Fig. Here we also provide a time efficiency compar-
ison with other detection models. Without training and an
additional model, our method could tell if the image is nor-
mal or adversarial in 1 second on the MNIST dataset and 50
seconds on the ImageNet dataset while using the ResNet-18
model. The detection time depends on the complexity of the
model because the complexity of the model will directly af-
fect the time spent in model interpretation. Without using the
SmoothGradient techniques, the time of the detection pro-
cess will be shortened but the accuracy will be reduced
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Figure 6: Shannon Entropy comparison between the normal
group and adversarial group with different attacks using in-
tegrated gradient method for explaning

Table 1: Detection rate of EXPLAINER on whitebox attacks
and comparison with state-of-art detection method.

Attack Explainer MagNet FS
CW
CW
CW
BIM
MIM

99.8%
99.9%
80%
80%
80%

86%
86%
96%
100%
100%

91%
100%
100%
98%
98%

Conclusion
In this paper, we proposed EXPLAINER, a framework to
detect adversarial examples using explanation techniques
with noise reduction. The motivation for combining expla-
nation techniques in adversarial attack detection is that dis-
tinguishability exists between normal and abnormal expla-
nations and their corresponding explanation maps for any
target class. Experiments showed that our approach is ef-
fective against white-box attacks in different datasets un-
der common explanation techniques. At the same time, the
use of interpretation techniques can also tell us what kind
of attacks the image has been subjected to. For example,
patch attacks have very obvious interpretability character-
istics. We acknowledge the possibility of more sophisticated
white-box attacks in the future and hope our work will in-
spire further research in this direction. We believe our pro-
posed defense can be used in conjunction with state-of-the-
art detection methods to boost the detection of adversarial
attacks.
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