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Abstract
Neural networks performance has been significantly im-
proved in the last few years, at the cost of an increasing
number of floating point operations (FLOPs). When com-
putational resources are limited, more FLOPs becomes an
issue. As an attempt to solve this problem, pruning filters
is a common solution, but most existing pruning methods
do not preserve the model accuracy efficiently and therefore
require a large number of finetuning epochs. In this paper,
we propose an automatic pruning method that learns which
neurons to preserve in order to maintain the model accu-
racy while reducing the FLOPs to a predefined target. To ac-
complish this task, we introduce a trainable bottleneck that
only requires 25.6% (CIFAR-10) or 15.0% (ILSVRC2012)
of the dataset within one single epoch to learn which filters
to prune. Experiments on various architectures and datasets
show that the proposed method can not only preserve the ac-
curacy after pruning but also outperform existing methods af-
ter finetuning. With 52.00% FLOPs reduction on ResNet-50,
we achieve a Top-1 accuracy of 47.51% after pruning and a
state-of-the-art (SOTA) accuracy of 76.63% after finetuning
on ILSVRC2012. Code available at https://github.com/nota-
github/autobot AAAI23.

1 Introduction
In the last decade, Deep Neural Networks (DNNs) popu-
larity has grown exponentially as the results improved, and
they are now used in a variety of applications such as clas-
sification, detection, etc. However, these improvements are
often faced with increasing model complexity, resulting in
a need for more computational resources. Various attempts
to make heavy models more compact have been proposed,
based on different compression methods such as knowledge
distillation (Polino, Pascanu, and Alistarh 2018; Guo et al.
2020), pruning (Li et al. 2017; Lin et al. 2020a,b; Yeom
et al. 2021), quantization (Qu et al. 2020), neural architec-
ture search (NAS) (Yang et al. 2021), etc. Network pruning,
which consists in removing redundant and unimportant con-
nections, received great interest from the industry as it is a
simple and effective solution. While the main challenge of
this method is to find a good pruning criterion, another dif-
ficulty is to define what percentage of each layer should be
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Figure 1: System flow of AutoBot for automatic network
pruning. A trainable bottleneck is injected after each con-
volution block. They are then updated to restrict the infor-
mation flow (like water taps) while minimizing the accuracy
drop, with the given targeted FLOPs and a small amount of
data. The most restricted filters are pruned afterwards. As a
result, compared to other existing pruning methods, Auto-
Bot can efficiently preserve the accuracy, leading to a SOTA
accuracy after finetuning.

pruned. As a manual search is a time-consuming process that
requires human expertise, recent works have proposed meth-
ods that automatically prune the redundant filters throughout
the network to meet a given constraint such as the number of
parameters, FLOPs, or hardware platform (Liu et al. 2017;
You et al. 2019; Li et al. 2021; Molchanov et al. 2019; Lin
et al. 2020b; Yeom et al. 2021; Yu et al. 2018; Dai et al.
2018; Zheng et al. 2021). To automatically find the best-
pruned architectures, these methods rely on various metrics
such as the 2nd order Taylor expansions (Molchanov et al.
2019), the layer-wise relevance propagation score (Yeom
et al. 2021), etc. For further details, please find Sec. 2. Al-
though these strategies improved over time, they usually do
not explicitly aim to preserve the model accuracy, or they do
it in a computationally expensive way.

In this paper, we make the hypothesis that, for the same
compression, the pruned architecture that can lead to the
best accuracy after finetuning is the one that most effi-
ciently preserves the accuracy during the pruning process
(see Sec. 4.5). We therefore introduce an automatic prun-
ing method, called AutoBot, that uses trainable bottlenecks
to efficiently preserve the model accuracy while minimizing
the FLOPs, as shown in Fig. 1. These bottlenecks only re-
quire one single epoch of training with 25.6% (CIFAR-10)



or 15.0% (ILSVRC2012) of the dataset to efficiently learn
which filters to prune. We compare AutoBot with various
pruning methods, and show a significant improvement of the
pruned models before finetuning, leading to a SOTA accu-
racy after finetuning. We also perform a practical deploy-
ment test on several edge devices to demonstrate the speed
improvement of the pruned models.

To summarize, our contributions are as follows:
• We introduce AutoBot, a novel automatic pruning

method that uses a trainable bottleneck to efficiently
learn which filter to prune in order to maximize the ac-
curacy while minimizing the FLOPs of the model. This
method can easily and intuitively be implemented regard-
less of the dataset or model architecture.

• We demonstrate that preserving the accuracy during the
pruning process has a strong impact on the accuracy of
the finetuned model (Sec. 4.5).

• Extensive experiments show that AutoBot efficiently pre-
serve the accuracy after pruning (before finetuning), and
outperforms previous pruning methods once finetuned.

2 Related Works
In this section, we summarize some related works com-
pared to our proposed method. Traditionally, magnitude-
based pruning aims to exploit the inherent characteristics of
the network to define a pruning criterion, without modifying
the network parameters. Popular criteria include lp-norm (Li
et al. 2017; Lin et al. 2021; Li et al. 2020), Taylor expan-
sion (Molchanov et al. 2019), Gradient (Liu and Wu 2019),
Singular Value Decomposition (Lin et al. 2020a), sparsity of
output feature maps (Hu et al. 2016), geometric median (He
et al. 2019), etc. Recently, Tang et al. (2020) proposed a
scientific control pruning method, called SCOP, which in-
troduces knockoff features as the control group. In contrast,
adaptive pruning needs to retrain the networks from scratch
with a modified training loss or architecture which adds new
constraints. Several works (Liu et al. 2017; Luo, Wu, and
Lin 2017; Ye et al. 2018) add trainable parameters to each
feature map channel to obtain data-driven channel sparsity,
enabling the model to automatically identify redundant fil-
ters. Luo, Wu, and Lin (2017) introduce Thinet that formally
establishes filter pruning as an optimization problem and
prunes filters based on statistical information computed from
its next layer, not the current layer. Lin et al. (2019) propose
a structured pruning method that jointly prunes filters and
other structures by introducing a soft mask with sparsity reg-
ularization. However, retraining the model from scratch is a
time- and resource-consuming process that does not signif-
icantly improve the accuracy compared to magnitude-based
pruning. Although these two pruning strategies are intuitive,
the pruning ratio must be manually defined layer-by-layer,
which is a time-consuming process that requires human ex-
pertise. Instead, in this paper, we focus on automatic prun-
ing.

As suggested by the name, automatic network pruning
removes the redundant filters throughout the network au-
tomatically under any constraints such as a number of pa-
rameters, FLOPs, or hardware platform. In this respect, a

Algorithm 1: AutoBot

Input: pre-trained model f , targeted FLOPs FT , acceptable
FLOPs error ϵ, hyper-parameter β, number of iterations k,
training data D
Output: Pruned model f ′

1: Inject Trainable Bottlenecks in f
2: for Batch X in D[0; k] do
3: L← LCE(f(X ;Λ)) + βLg(Λ)
4: Λ← Update(Λ, L)
5: end for
6: Λbool ← GetPruningMask(Λ, FT , ϵ)
7: Remove Trainable Bottlenecks from f
8: f ′ ← Prune(f,Λbool)
9: f ′ ← Finetune(f ′, D)

10: return f ′

large number of automatic pruning methods have been pro-
posed. Liu et al. (2017) optimize the scaling factor γ in the
batch-norm layer as a channel selection indicator to decide
which channels are unimportant. You et al. (2019) propose
an automatic pruning method, called Gate Decorator, which
transforms CNN modules by multiplying their output by
channel-wise scaling factors and adopt an iterative pruning
framework called Tick-Tock to boost pruning accuracy. Li
et al. (2021) propose a collaborative compression method
that mutually combines channel pruning and tensor decom-
position. Molchanov et al. (2019) estimates the contribution
of a filter to the final loss using 2nd order Taylor expan-
sions and iteratively removes those with smaller scores. Lin
et al. (2020b) propose ABCPruner to find the optimal pruned
structure automatically by updating the structure set and
recalculating the fitness. Back-propagation methods (Yeom
et al. 2021; Yu et al. 2018) compute the relevance score of
each filter by following the information flow from the model
output. Dai et al. (2018) and Zheng et al. (2021) adopt in-
formation theory to preserve the information between the
hidden representation and input or output.

Most existing methods are computationally and time ex-
pensive because they either require to retrain the model from
scratch (Liu et al. 2017), apply iterative pruning (You et al.
2019; Molchanov et al. 2019; Yeom et al. 2021; Yu et al.
2018; Li et al. 2021) or finetune the model while prun-
ing (Lin et al. 2020b; Dai et al. 2018). When the model
isn’t retrained or finetuned during the pruning process, they
generally do not preserve the model accuracy after prun-
ing (Zheng et al. 2021; Yeom et al. 2021; Yu et al. 2018), and
thus require to be finetuned for a large number of epochs.
In contrast to other automatic pruning methods, AutoBot
stands out by its speed and its ability to preserve the accu-
racy of the model during the pruning process.

3 Method
Motivated by several bottleneck approaches (Tishby,
Pereira, and Bialek 2000; Alemi et al. 2017; Schulz et al.
2020), our method control the information flow throughout
the pretrained network using Trainable Bottlenecks that are
injected into the model. The objective function of the train-



Algorithm 2: GetPruningMask

Input: trained bottlenecks parameters Λ, targeted FLOPs
FT , acceptable FLOPs error ϵ
Output: pruning mask Λbool

1: T ← 0.5
2: Λbool ← 1 where Λ > T , 0 elsewhere
3: F ← g(Λbool) (Eq. 5)
4: i← 0
5: while |F − FT | > ϵ do
6: if F > FT then
7: T ← T + 0.25

2i

8: else
9: T ← T − 0.25

2i

10: end if
11: Λbool ← 1 where Λ > T , 0 elsewhere
12: F ← g(Λbool)
13: i← i+ 1
14: end while
15: return Λbool

able bottleneck is to maximize the information flow from
input to output while minimizing the loss by adjusting the
amount of information in the model under the given con-
straints. During the training procedure, only the parameters
Λ of the trainable bottlenecks are updated while all the pre-
trained parameters of the model are frozen.

Compared to other pruning methods inspired by the in-
formation bottleneck (Dai et al. 2018; Zheng et al. 2021),
we do not consider the compression of mutual information
between the input/output and the hidden representations in
order to evaluate the information flow. Such methods are or-
thogonal to AutoBot, which explicitly quantifies how much
information is passed through each layer. This explicit quan-
tification result in a faster training –we optimize the trainable
bottlenecks on a fraction of one single epoch only– and an
improved capacity to preserve the accuracy. Our AutoBot
pruning process is summarized in Alg. 1.

3.1 Trainable Bottleneck
We formally define the concept of trainable bottleneck as an
operator that can restrict the information flow throughout the
network during the forward pass, using trainable parameters.
Mathematically, it can be formulated as:

Xi+1 = B(λi, Xi) (1)

where B stands for the trainable bottleneck, λi denotes
the bottleneck parameters of the ith operator, and Xi and
Xi+1 denote the input and output feature map of the bottle-
neck at the ith operator, respectively. For instance, Schulz
et al. (Schulz et al. 2020) control the amount of information
into the model by injecting noise into it. In this case, B is ex-
pressed as B(λi, Xi) = λiXi + (1− λi)ϵ where ϵ denotes
the noise.

Inspired by the information bottleneck concept (Tishby,
Pereira, and Bialek 2000; Alemi et al. 2017), we formulate
a general bottleneck that is not limited to only information
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Figure 2: Per-layer filter pruning ratio for various targeted
FLOPs on VGG-16. This ratio is automatically determined
by AutoBot to satisfy the targeted FLOPs.

theory but can be optimized to satisfy any constraint as fol-
low:

min
Λ
LCE(Y, f(X ;Λ)) s.t. r(Λ) ≤ C (2)

where LCE stands for the cross-entropy loss, X and Y stand
for the model input and output, Λ is the set of the bottle-
neck parameters (Λ = [λ1,λ2, . . . ,λL]) in the model, r is
a constraint function, and C is the desired constraint.

3.2 Pruning Strategy
In the following, we define a convolution block as a convo-
lution layer, plus all the following operators that preserve
the number and order of channels. It can contain multiple
convolutions if their outputs are merged (in the case of a
skip connection). In this work, we inject a bottleneck into
each convolution block throughout the network such that
the information flow of the estimated model to be pruned
is quantified by restricting trainable parameters layer-wisely.

Compared to previous works, our bottleneck function
B(λi, Xi) (Eq. 1) do not use noise to control the informa-
tion flow:

Xi+1 = λiXi (3)
where λi ∈ [0, 1]. Therefore the range of Xi+1 is changing
from [ϵ,Xi] to [0, Xi]. For pruning, this is more relevant
since replacing an operator input by zeros is equivalent to
pruning the operator (i.e. pruning the corresponding output
of the previous operator).

Following the general objective function of the trainable
bottleneck (Eq. 2), we introduce a regularizer g to constrain
the FLOPs of the pruned architecture:

min
Λ
LCE(Y, f(X ;Λ)) s.t. g(Λ) = TF (4)

where TF is the target FLOPs (manually fixed), and g(Λ)
estimates the FLOPs of the model weighted by Λ. Formally,
given a neural network consisting of multiple convolutional
blocks, we define g as follows:

g(Λ) =

L∑
i=1

Ji∑
j=1

gji (λi,λi−1) (5)



where λi is the vector of parameters of the information bot-
tleneck following the ith convolution block, gji is the func-
tion that computes the FLOPs of the jth operator of the ith

convolution block weighted by λi, L is the total number of
convolution blocks in the model and Ji is the total number
of operators in the ith convolution block. For instance, if gji
is for a convolutional operator without bias and padding, it
is expressed as:

gji (λi,λi−1) = sum(λi)×sum(λi−1)×h×w×k×k (6)

where h and w are the height and width of the output feature
map of the convolution, and k is its kernel size. Notice that
within the ith convolution block, all operators share λi. That
is, at a block level all the operators belonging to the same
convolution block are pruned together.

To solve our optimization problem defined in Eq. 4, we
introduce Lg , a loss term designed to satisfy the constraint g
from Eq. 5. We formulate Lg as follow:

Lg =


g(Λ)−TF

MF−TF
, if g(Λ) ≥ TF

1− g(Λ)
TF

, otherwise
(7)

where MF is the FLOPs of the original model, and TF is
the predefined target FLOPs.

In contrast to g, this loss term is normalized such that the
scale of the loss is always the same. As a result, for a given
dataset, the training parameters are stable across different
architectures. The optimization problem to update the pro-
posed information bottlenecks for automatic pruning can be
summarized as follows:

min
Λ
LCE(Y, f(X ;Λ)) + βLg(Λ) (8)

where β is a hyper-parameter that indicates the relative
importance of its associated objective.

From Λ to pruning mask Once the bottlenecks are trained,
Λ can be directly used as a pruning criterion. Therefore, we
propose a way to quickly find the threshold under which
neurons should be pruned. Since our bottleneck allows us
to quickly and accurately compute the weighted FLOPs
(Eq. 5), we can estimate the FLOPs of the model to be
pruned without actual pruning. This is done by setting Λ to
zero for the filters to be pruned, or one otherwise. We call
this process pseudo-pruning. In order to find the optimal
threshold, we initialize a threshold to 0.5 and pseudo-prune
all filters with Λ lower than this threshold. We then compute
the weighted FLOPs, and adopt the binary search algorithm
to efficiently minimize the distance between the current
and targeted FLOPs. This process is repeated until the gap
is small enough. This process is summarized in Alg. 2.
Once we have found the optimal threshold, we cut out all
bottlenecks from the model and finally prune all the filters
with Λ lower than this threshold to get the compressed
model with the targeted FLOPs. This whole process takes
less than a second on CPU as it is based on the binary search
algorithm, which has a complexity of O(log n), n being the

Accuracy

VGG-16 (109 MFLOPs) ResNet-56 (56 MFLOPs)

Figure 3: Evolution of accuracy after pruning (before fine-
tuning) and of dissimilarity between filters ranking (nor-
malised Kendall tau distance) when increasing the number
of batches, on CIFAR-10.

number of FLOPs in this case.

Parametrization Following Schulz et al. (2020), we do
not directly optimize Λ as this would require to use clip-
ping to stay in the [0, 1] interval. Instead, we parametrize
Λ = sigmoid(Ψ), where the elements of Ψ are in R.

Reduced training data We empirically observed that the
training for the bottlenecks can converge quickly before the
end of the first epoch. For instance, we can observe on Fig. 3
that around 200 batches are needed (25.6% of the dataset)
to converge on CIFAR-10. For ILSVRC2012, the same ob-
servation is made with 15.0% of the dataset. Therefore, it
suggests that regardless of model size (i.e. FLOPs), the opti-
mally pruned architecture can be efficiently estimated using
only a small portion of the dataset.

4 Experiments
4.1 Experimental Settings
To demonstrate the efficiency of AutoBot on a variety of
experimental setups, experiments are conducted on two
popular benchmark datasets and five common CNN archi-
tectures, 1) CIFAR-10 (Krizhevsky, Hinton et al. 2009)
with VGG-16 (Simonyan and Zisserman 2015), ResNet-
56/110 (He et al. 2016), DenseNet (Huang et al. 2017), and
GoogLeNet (Szegedy et al. 2015), and 2) ILSVRC2012 (Im-
ageNet) (Deng et al. 2009) with ResNet-50.

Experiments are performed within the PyTorch and
torchvision frameworks (Paszke et al. 2017) under Intel(R)
Xeon(R) Silver 4210R CPU 2.40GHz and NVIDIA RTX 2080
Ti with 11GB for GPU processing.

For CIFAR-10, we trained the bottlenecks for 200 iter-
ations with a batch size of 64, a learning rate of 0.6 and β
equal to 5.5, and we finetuned the model for 200 epochs with
the initial learning rate of 0.02 scheduled by cosine anneal-
ing scheduler and with a batch size of 256. For ImageNet, we
trained the bottlenecks for 3000 iterations with a batch size
of 64, a learning rate of 0.4 and β equal to 13, and we fine-
tuned the model for 200 epochs with a batch size of 512 and
with the initial learning rate of 0.006 scheduled by cosine
annealing scheduler. Bottlenecks are optimized via Adam
optimizer. All networks are retrained via the Stochastic Gra-
dient Descent (SGD) optimizer, with momentum of 0.9 and



Table 1: Pruning results of five network architectures on CIFAR-10, sorted by FLOPs in descending order. Scores in brackets
denote the pruning ratio in the compressed models. Unless specified otherwise, the accuracy before finetuning was re-computed
by us using the code from the corresponding paper.

Method Automatic Top1-acc Top1-acc ↑ ↓ FLOPs Params
before finetuning (Pruning Ratio) (Pruning Ratio)

VGG-16 (Simonyan and Zisserman 2015) – 93.96% 0.0% 314.29M (0.0%) 14.99M (0.0%)
L1 (Li et al. 2017) 88.70%** 93.40% -0.56% 206.00M (34.5%) 5.40M (64.0%)

CC-0.5 (Li et al. 2021) ✓ – 94.15% +0.19% 154.00M (51.0%) 5.02M (66.5%)
AutoBot (Ours) ✓ 88.29% 94.19% +0.23% 145.61M (53.7%) 7.53M (49.8%)

CC-0.6 (Li et al. 2021) ✓ – 94.09% +0.13% 123.00M (60.9%) 5.02M (73.2%)
HRank-65 (Lin et al. 2020a) 10.06% 92.34% -1.62% 108.61M (65.4%) 2.64M (82.4%)

AutoBot (Ours) ✓ 82.73% 94.01% +0.05% 108.71M (65.4%) 6.44M (57.0%)
ITPruner (Zheng et al. 2021) ✓ 10.00%* 94.00% +0.04% 98.80 (68.6%) –
ABCPruner (Lin et al. 2020b) ✓ 10.00%* 93.08% -0.88% 82.81M (73.7%) 1.67M (88.9%)

DCFF (Lin et al. 2021) – 93.49% -0.47% 72.77M (76.8%) 1.06M (92.9%)
AutoBot (Ours) ✓ 71.24% 93.62% -0.34% 72.60M (76.9%) 5.51M (63.24%)

VIBNet (Dai et al. 2018) ✓ – 91.50% -2.46% 70.63M (77.5%) – (94.7%)
ResNet-56 (He et al. 2016) – 93.27% 0.0% 126.55M (0.0%) 0.85M (0.0%)

L1 (Li et al. 2017) – 93.06% -0.21% 90.90M (28.2%) 0.73M (14.1%)
HRank-50 (Lin et al. 2020a) 10.73% 93.17% -0.10% 62.72M (50.4%) 0.49M (42.4%)
SCP (Kang and Han 2020) – 93.23% -0.04% 61.89M (51.1%) 0.44M (48.2%)

CC (Li et al. 2021) ✓ 26.54% 93.64% +0.37% 60.00M (52.6%) 0.44M (48.2%)
ITPruner (Zheng et al. 2021) ✓ 10.00%* 93.43% +0.16% 59.50 (53.0%) –

FPGM (He et al. 2019) 17.44% 93.26% -0.01% 59.40M (53.0%) –
LFPC (He et al. 2020) – 93.24% -0.03% 59.10M (53.3%) –

ABCPruner (Lin et al. 2020b) ✓ 10.00%* 93.23% -0.04% 58.54M (53.7%) 0.39M (54.1%)
DCFF (Lin et al. 2021) – 93.26% -0.01% 55.84M (55.9%) 0.38M (55.3%)

AutoBot (Ours) ✓ 85.58% 93.76% +0.49% 55.82M (55.9%) 0.46M (45.9%)
SCOP (Tang et al. 2020) 57.34% 93.64% +0.37% – (56.0%) – (56.3%)

ResNet-110 (He et al. 2016) – 93.5% 0.0% 254.98M (0.0%) 1.73M (0.0%)
L1 (Li et al. 2017) – 93.30% -0.20% 155.00M (39.2%) 1.16M (32.9%)

FPGM (He et al. 2019) 11.79% 93.74% +0.24% 121.00M (52.5%) –
HRank-58 (Lin et al. 2020a) 10.00% 93.36% -0.14% 105.70M (58.5%) 0.70M (59.5%)

LFPC (He et al. 2020) – 93.07% -0.43% 101.00M (60.3%) –
ABCPruner (Lin et al. 2020b) ✓ 10.00%* 93.58% +0.08% 89.87M (64.8%) 0.56M (67.6%)

DCFF (Lin et al. 2021) – 93.80% +0.30% 85.30M (66.5%) 0.56M (67.6%)
AutoBot (Ours) ✓ 84.37% 94.15% +0.65% 85.28M (66.6%) 0.70M (59.5%)

GoogLeNet (Szegedy et al. 2015) – 95.05% 0.0% 1.53B (0.0%) 6.17M (0.0%)
L1 (Li et al. 2017) – 94.54% -0.51% 1.02B (33.3%) 3.51M (43.1%)

Random 10.00% 94.54% -0.51% 0.96B (37.3%) 3.58M (42.0%)
HRank-54 (Lin et al. 2020a) 10.00% 94.53% -0.52% 0.69B (54.9%) 2.74M (55.6%)

CC (Li et al. 2021) ✓ – 94.88% -0.17% 0.61M (60.1%) 2.26M (63.4%)
ABCPruner (Lin et al. 2020b) ✓ 10.00%* 94.84% -0.21% 0.51B (66.7%) 2.46M (60.1%)

DCFF (Lin et al. 2021) – 94.92% -0.13% 0.46B (69.9%) 2.08M (66.3%)
HRank-70 (Lin et al. 2020a) 10.00% 94.07% -0.98% 0.45B (70.6%) 1.86M (69.9%)

AutoBot (Ours) ✓ 90.18% 95.23% +0.16% 0.45B (70.6%) 1.66M (73.1%)
DenseNet-40 (Huang et al. 2017) – 94.81% 0.0% 287.71M (0.0%) 1.06M (0.0%)

GAL-0.01 (Lin et al. 2019) – 94.29% -0.52% 182.92M (36.4%) 0.67M (36.8%)
AutoBot (Ours) ✓ 87.85% 94.67% -0.14% 167.64M (41.7%) 0.76M (28.3%)

HRank-40 (Lin et al. 2020a) 25.58% 94.24% -0.57% 167.41M (41.8%) 0.66M (37.7%)
Variational CNN (Zhao et al. 2019) – 93.16% -1.65% 156.00M (45.8%) 0.42M (60.4%)

AutoBot (Ours) ✓ 83.20% 94.41% -0.4% 128.25M (55.4%) 0.62M (41.5%)
GAL-0.05 (Lin et al. 2019) – 93.53% -1.28% 128.11M (55.5%) 0.45M (57.5%)

*this method train the pruned model from scratch, instead of finetuning
**according to (Kim et al. 2020)

decay factor of 2×10−3 for CIFAR-10 and with momentum
of 0.99 and decay factor of 1× 10−4 for ImageNet.

4.2 Evaluation Metrics

We first evaluate the accuracy of the models. We measure
it after finetuning, as is common in DNN pruning literature.
However, in contrast to other works, we also measure it right
after the pruning step (before finetuning) to show that our
method effectively preserves the important filters compared
to other methods. In addition, we adopt the FLOPs and num-
ber of parameters to measure the computational efficiency
and model size.

4.3 Automatic Pruning on CIFAR-10
To demonstrate the improvement of our method, we firstly
conduct automatic pruning with some of the most popular
convolutional neural networks, namely VGG-16, ResNet-
56/110, GoogLeNet, and DenseNet-40. Tab. 1 indicates
experimental results with these architectures on CIFAR-10
for various number of FLOPs.

VGG-16 We performed on VGG-16 architecture with three
different pruning ratios. Tab. 1 demonstrates that AutoBot
can efficiently preserve initial Top-1 accuracy before fine-
tuning, even under the same FLOPs reduction (e.g. 82.73%
(proposed method) vs. 10.00% from 65.4% (HRank), 68.6%
(ITPruner), and 73.7% (ABCPruner) of FLOPs reduction),



Table 2: Pruning results on ResNet-50 with ImageNet, sorted by FLOPs. Scores in brackets of “FLOPs” and “Params” denote
the pruning ratio of FLOPs and number of parameters in the compressed models. Accuracy before finetuning was re-computed
by us using the code from the corresponding paper.

Method Automatic Top1-acc Top1-acc ↑ ↓ Top5-acc FLOPs Params
before finetuning (Pruning Ratio) (Pruning Ratio)

ResNet-50 (He et al. 2016) – 76.13% 0.0% 92.87% 4.11B (0.0%) 25.56M (0.0%)
ThiNet-50 (Luo, Wu, and Lin 2017) – 72.04% -4.09% 90.67% – (36.8%) – (33.72%)

FPGM (He et al. 2019) 0.25% 75.59% -0.59% 92.27% 2.55B (37.5%) 14.74M (42.3%)
ABCPruner (Lin et al. 2020b) ✓ 0.10%* 74.84% -1.29% 92.31% 2.45B (40.8%) 16.92M (33.8%)

SFP (He et al. 2018) – 74.61% -1.52% 92.06% 2.38B (41.8%) –
HRank-74 (Lin et al. 2020a) 0.09% 74.98% -1.15% 92.33% 2.30B (43.7%) 16.15M (36.8%)

Taylor (Molchanov et al. 2019) – 74.50% -1.63% – – (44.5%) – (44.9%)
DCFF (Lin et al. 2021) – 75.18% -0.95% 92.56% 2.25B (45.3%) 15.16M (40.7%)

ITPruner (Zheng et al. 2021) ✓ 0.10%* 75.75% -0.38% – 2.23B (45.7%) –
AutoPruner (Luo and Wu 2020b) ✓ – 74.76% -1.37% 92.15% 2.09B (48.7%) –

RRBP (Zhou et al. 2019) – 73.00% -3.13% 91.00% – – (54.5%)
AutoBot (Ours) ✓ 47.51% 76.63% +0.50% 92.95% 1.97B (52.0%) 16.73M (34.5%)

ITPruner (Zheng et al. 2021) ✓ 0.10%* 75.28% -0.85% – 1.94B (52.8%) –
GDP-0.6 (Lin et al. 2018) ✓ – 71.19% -4.94% 90.71% 1.88B (54.0%) –
SCOP (Tang et al. 2020) 4.26% 75.26% -0.87% 92.53% 1.85B (54.6%) 12.29M (51.9%)

GAL-0.5-joint (Lin et al. 2019) – 71.80% -4.33% 90.82% 1.84B (55.0%) 19.31M (24.5%)
ABCPruner (Lin et al. 2020b) ✓ 0.10%* 73.52% -2.61% 91.51% 1.79B (56.6%) 11.24M (56.0%)

GAL-1 (Lin et al. 2019) – 69.88% -6.25% 89.75% 1.58B (61.3%) 14.67M (42.6%)
LFPC (He et al. 2020) – 74.18% -1.95% 91.92% 1.60B (61.4%) –

GDP-0.5 (Lin et al. 2018) ✓ – 69.58% -6.55% 90.14% 1.57B (61.6%) –
DCFF (Lin et al. 2021) – 75.60% -0.53% 92.55% 1.52B (63.0%) 11.05M (56.8%)
DCFF (Lin et al. 2021) – 74.85% -1.28% 92.41% 1.38B (66.7%) 11.81M (53.8%)

AutoBot (Ours) ✓ 14.71% 74.68% -1.45% 92.20% 1.14B (72.3%) 9.93M (61.2%)
CURL (Luo and Wu 2020a) ✓ 0.10% 73.39% -2.74% 91.46% 1.13B (72.5%) 6.67M (73.9%)

GAL-1-joint (Lin et al. 2019) – 69.31% -6.82% 89.12% 1.11B (73.0%) 10.21M (60.1%)
DCFF (Lin et al. 2021) – 73.81% -2.32% 91.59% 1.02B (75.1%) 6.56M (74.3%)

*this method train the pruned model from scratch, instead of finetuning

Figure 4: Top-1 accuracy before and after finetuning for dif-
ferent pruning strategies, on VGG-16. The strategies are de-
tailed in Sec. 4.5

thus leading to a SOTA accuracy after finetuning. For
instance, we get 71.24% and 93.62% accuracy before and
after finetuning respectively when reducing the FLOPs by
76.9%. Our method even outperforms the baseline by 0.05%
and 0.23% when reducing the FLOPs by 65.4% and 53.7%,
respectively. As emphasized in Fig. 2, the per-layer filter
pruning ratio is automatically determined by our method,
according to the target FLOPs.

ResNet ResNet is an architecture characterized by its
residual connections. Pruned model with our method can
improve accuracy from 85.58% before finetuning to 93.76%
after finetuning under a FLOPs reduction of 55.9% for
ResNet-56, and from 84.37% before finetuning to 94.15%
after finetuning under a FLOPs reduction of 66.6% for
ResNet-110. Under similar or even smaller FLOPs, our

approach accomplishes an excellent Top-1 accuracy com-
pared to other existing magnitude-based or adaptive-based
pruning methods and is beyond the baseline model’s perfor-
mance (93.27% for ResNet-56 and 93.50% for ResNet-110).

GoogLeNet GoogLeNet is a large architecture characterized
by its parallel branches. Without any further processing,
our initial accuracy of 90.18% after pruning under a
FLOPs reduction of 70.6% (against 10% for HRank and
ABCPruner for the similar compression ratio) leads to the
SOTA accuracy of 95.23% after finetuning, outperforming
recent papers such as DCFF and CC. Moreover, we also
achieve a significant improvement in term of parameters
reduction (73.1%), although it is not the primary focus of
our method.

DenseNet-40 As ResNet, DenseNet-40 is an architecture
based on residual connections. We experimented with two
different target FLOPs, as shown in Tab. 1. Notably, we got
an accuracy of 83.2% before finetuning and 94.41% after
finetuning under a FLOPs reduction of 55.4%.

4.4 Automatic Pruning on ImageNet
To show the performance of our method on ILSVRC-2012,
we chose the ResNet-50 architecture, made of 53 convolu-
tion layers followed by a fully-connected layer. Due to the
complexity of this dataset (1,000 classes and millions of im-
ages), this task is more challenging than the compression of
models on CIFAR-10. While existing pruning methods re-
quiring to manually define the pruning ratio for each layer
achieve reasonable performance, our global pruning method
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Figure 5: Performance comparison between original and pruned models in terms of accuracy (x-axis) and inference time (ms)
(y-axis) using five different networks on CIFAR-10. Top-left is better performance.

allows competitive results in all evaluation metrics includ-
ing Top-1 and Top-5 accuracy, FLOPs reduction as well as
number of parameters reduction, as reported in Tab. 2. Under
the high FLOPs compression of 72.3%, we obtain an accu-
racy of 74.68%, outperforming recent works including GAL
(69.31%) and CURL (73.39%) with a similar compression.
And under the compression of 52%, our method even out-
performs the baseline by 0.5% and leaves all the previous
methods behind by at least 1% by doing so. Therefore, the
proposed method also works well on a complex dataset.

4.5 Ablation Study

Impact of Preserving the Accuracy To highlight the im-
pact of preserving the accuracy during the pruning process,
we compare the accuracy before and after finetuning of Au-
toBot with different pruning strategies in Fig. 4. To show the
superiority of an architecture found by preserving the accu-
racy compared to a manual design, a comparison study is
conducted by manually designing three different strategies:
1) Same Pruning, Different Channels (SPDC), 2) Different
Pruning, Different Channels (DPDC), and 3) Reverse.

DPDC has the same FLOPs as the architecture found by
AutoBot but uses a different per-layer pruning ratio pro-
posed by Lin et al. (Lin et al. 2020a). To show the impact of
a bad initial accuracy for finetuning, we propose the SPDC
strategy that has the same per-layer pruning ratio as the ar-
chitecture found by AutoBot but with randomly selected fil-
ters. We also propose to reverse the order of importance of
the filters selected by AutoBot such that only the less impor-
tant filters are pruned. By doing so, we can better appreciate
the importance of the scores returned by AutoBot. In Fig. 4,
we define this strategy as Reverse. This strategy gives a dif-
ferent per-layer pruning ratio than the architecture found by
AutoBot. We evaluate the three strategies on VGG-16 with a
pruning ratio of 65.4%, and we use the same finetuning con-
ditions for all of them. We select the best accuracy among 3
runs. As shown in Fig. 4, these three different strategies give
an initial accuracy of 10%. While the DPDC strategy gives
an accuracy of 93.18% after finetuning, the SPDC strategy
displays 93.38% accuracy, thus showing that an architecture
found by preserving the initial accuracy gives better per-
formance. Meanwhile, the Reverse strategy obtains 93.24%,
which is surprisingly better than the hand-made architecture
but, as expected, it underperforms the architecture found by
AutoBot, even if we apply the SPDC strategy.

Deployment Test To highlight the improvement in real
situations, we compare the inference speed-up of our com-
pressed networks deployed on GPU-based (NVIDIA Jetson
Nano) and CPU-based (Raspberry Pi 4, Raspberry Pi 3, and
Raspberry Pi 2) edge devices. Specifications of these devices
are available in the Supplementary Tab.2. The pruned mod-
els are converted into ONNX format. Fig. 5 shows the com-
parison study for inference times between the original pre-
trained models and our compressed models. We can show
that inference time for our pruned models is improved in
every target edge device (e.g. GoogleNet is 2.85× faster
on Jetson-Nano and 2.56× faster on Raspberry Pi 4B with
0.22% increased accuracy). Especially, the speed is signifi-
cantly better on GPU-based devices for single sequence of
layers models (e.g. VGG-16 and GoogLeNet) whereas it im-
proved the most on CPU-based devices for models with skip
connections. More detailed results are available in the Sup-
plementary Tab.3.

5 Limitations
While pruning with Autobot is a fast process, finding the
hyper-parameters that most efficiently preserve the accuracy
requires a hyper-parameter optimization step. However, our
experiments highlight the relative stability of these hyper-
parameters for different models on the same dataset. For in-
stance, all our results on CIFAR10 presented in Tab. 1 were
obtained with the same hyper-parameters.

For complex architectures, manually placing the bottle-
necks can be challenging as it requires identifying which
operations must be pruned together. It is interesting to notice
that this could be solved with automation as these dependen-
cies follow simple rules (e.g., in case of a skip connection,
summed branches should be pruned together).

6 Conclusion
In this paper, we introduced AutoBot, a novel automatic
pruning method focusing on FLOPs reduction. To deter-
mine which filters to prune, AutoBot employs trainable bot-
tlenecks designed to preserve the channels that maximize
the model accuracy while minimizing the FLOPs. Notably,
these bottlenecks only require one epoch on 25.6% (CIFAR-
10) or 15.0% (ILSVRC2012) of the dataset to be trained. Ex-
tensive experiments on various CNN architectures demon-
strate that the proposed method is superior to previous chan-
nel pruning methods both before and after finetuning. Our
paper is the first to compare accuracy before finetuning.
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