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Abstract
Camera-only 3D detection based on BEV (bird-eye-view) has
achieved significant improvements recently. However, due to
its tremendous resource consumption, achieving large-scale
deployment of state-of-the-art models on autonomous driving
vehicles is difficult. In this work, we pioneer an efficient BEV
model, QD-BEV, via a systematic progressive quantization-
aware training (QAT) pipeline and a novel view-guided BEV
distillation algorithm. Despite the wide application of quan-
tization and distillation to lightening models in other tasks,
as pointed out in our paper, directly applying these methods
leads to intolerable performance degradation in BEV tasks.
To solve this issue, QD-BEV enables an stable and effec-
tive QAT pipeline with novel distillation objective, convert-
ing the cumbersome BEVFormer model into efficient QD-
BEV model. Systematic experiments demonstrate QD-BEV
achieves comparable or even higher accuracy than prior art
with significant efficiency improvements. On the nuScenes
datasets, the 4-bit weight and 6-bit activation quantized QD-
BEV-Tiny model achieves 37.2% NDS with only 15.8 MB
model size, outperforming BevFormer-Tiny by 1.8% with an
8× model compression. On the Small and Base variants, QD-
BEV models also perform superbly and achieve 47.9% NDS
(28.2 MB) and 49.2% NDS (32.9 MB), respectively.

Introduction and related work
Given its potential to enable autopilot, camera-only 3D de-
tection based on BEV (bird-eye-view) has become an im-
portant research direction for autonomous driving. Based on
input sensors, previous work can be divided into LiDAR-
based methods (Lang et al. 2019; Zhou and Tuzel 2018)
and camera-only methods (Li et al. 2022; Wang et al. 2022;
Huang et al. 2021a; Huang and Huang 2022; Liu et al.
2022a,b). Compared to the LiDAR-based methods, camera-
only methods have the merits of lower deployment cost,
closer to human eyes, and easier access to visual informa-
tion in the driving environment. However, even if using the
camera-only methods, the computational costs of running
state-of-the-art BEV models are still formidable, making it
difficult to deploy the model onto vehicles. For example,
BEVFormer-Base has a 540 ms inference latency (corre-
sponds to 1.85 fps) on one NVIDIA V100 GPU, which is
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infeasible for real-time applications that generally require
30 fps. Therefore, it is particularly crucial to explore and de-
vise lightweight models for camera-only 3D object detection
based on BEV, such as quantization (Jacob et al. 2018; Gho-
lami et al. 2021; Dong et al. 2020; Huang et al. 2021b) and
knowledge distillation (Hinton, Vinyals, and Dean 2015; Yin
et al. 2020). Quantization can greatly save the model size
and computational costs while improving the speed of model
reasoning. However, directly applying quantization would
lead to significant performance degradation. Compared to
image classification and 2D object detection tasks,multi-
camera 3D detection tasks are much more complicated and
difficult due to the existence of multiple views and informa-
tion from multiple dimensions (for example, the temporal
information and spatial information used in BEVFormer (Li
et al. 2022)).

In this work, we first conduct systematic experiments
and analyses on quantizing BEV networks. Then we devise
a quantization-aware view-guided distillation method (re-
ferred to as QD-BEV) that can decently solve the stability is-
sue of standard QAT while improving the final performance
of compact BEV models. Our proposed view-guided distil-
lation (VGD) can better leverage information from both the
image and the BEV domains, which can significantly outper-
form previous distillation methods which cannot jointly han-
dle the different types of losses in BEV networks. As shown
in Figure 1, we construct our QD-BEV pipeline leverag-
ing the mapping relationship between the image feature and
the BEV feature. Specifically, we first take the FP (floating-
point) model as the teacher model and the low-bit quantized
model as the student model, then we calculate the KL di-
vergence on the image feature and the BEV feature, respec-
tively.

Finally, we realize our unique View-Guided Distillation
(VGD) by organically combining the image feature and the
BEV feature through the camera’s external parameters. Note
that in our QD-BEV pipeline, neither additional training data
nor larger powerful teacher networks are used to tune the ac-
curacy, but QD-BEV models are still able to outperform pre-
vious baselines while having a significantly smaller model
size and computational requirements. Our contributions are
as follows:
• We pioneer the use of quantization to obtain QD-BEV,

a family of efficient models for camera-only 3D object



detection based on BEV.
• We conduct systematic experiments on quantizing BEV

models, unveiling major issues hampering standard
quantization-aware training methods on BEV.

• We propose view-guided distillation (VGD), which
jointly leverages both image domain and BEV domain
information. VGD boosts QAT performance by solving
the stability issue of standard QAT.

• The resulted QD-BEV outperforms previous baselines
while being significantly smaller. The W4A6 quantized
QD-BEV-Tiny has 37.2% NDS with an only 15.8 MB
model size, which outperforms the 8× larger BevFormer-
Tiny model by 1.8%.

Figure 1: Illustration of QD-BEV. In our pipeline, multi-
camera images are input into the floating-point teacher net-
work and the quantized student network in order to compute
the KL divergence in an element-wise manner. The KL di-
vergence is used as distillation loss in the image feature and
the BEV feature, respectively. Then we conduct view-guided
distillation using the BEV mask obtained from the external
parameters of the camera.

Method
In this section, we introduce our view-guided distillation and
progressive quantization-aware training methods in detail.

Progressive quantization-aware training
In symmetric linear quantization (Dong et al. 2019), the
quantizer maps weights and activations into integers with
a scale factor S. Uniformly quantizing to k bit can be ex-
pressed as:

S =
2|rmax|
2k − 1

, q = round
( r

S

)
, (1)

where r is the floating-point number being quantized, |rmax|
is the largest absolute value in r, and q is the quantized inte-
ger. In this work, we conduct systematic experiments to ana-
lyze the performance of quantization on BEV networks. For
PTQ, we apply the above quantization directly to the pre-
trained models during the inference stage. For QAT, we uti-
lize the straight-through estimator (STE) (Bengio, Léonard,

and Courville 2013) to define the forward and backward pass
for the above quantization operations and train the model to
better adapt to quantization. Both methods are useful and
can be applied to different circumstances for deployment.

As discussed in , due to the complexity of multi-camera
3D object detection tasks and of the BEV networks, directly
quantizing the model to ultra-low bit-width may incur sub-
optimal and unstable training, even gradient explosion. To
solve this problem, we introduce progressive QAT which
reduces the quantization influence with a two-fold process.
First, we propose to reach the target bit-width in a progres-
sive way. Instead of directly quantizing the network to the
final scheme of 4-bit weights and 6-bit activations (W4A6),
we first quantize it to W32A6. The quantization perturba-
tion from W32A32 to W32A6 is significantly smaller than
the perturbation from W32A32 to W4A6, which can in-
trinsically address the issue of performance drop and gra-
dient explosion. Furthermore, the W32A6 models has sig-
nificantly higher learning capacity than the W4A6 mod-
els, which helps the progressive roadmap from W32A32
to W32A6 to W4A6 to learn smoothly and obtain better-
optimized models.

Secondly, when converting the model from W32A6 to
W4A6, we propose a stage-wise progressive quantization
to gradually reducing the weight precision stage-by-stage.
Specifically, we follow the design of BEVFormer (Li et al.
2022) to consider four stages: backbone, neck, encoder, and
decoder. We first quantize the backbone to W4A6 while
keeping the other stages W32A6, and perform QAT on this
mixed-precision model. After the QAT converges, we move
on to the next stage of QAT where the neck precision is also
reduced. Iterative, we can obtain a fully quantized low-bit
network at the end. This fully-quantized model serves as the
starting point for our QD-BEV model, after which we fur-
ther boost the performance using the novel view-guided dis-
tillation method.

View-guided distillation
The most distinct characteristics of the BEV networks are
the joint process of extracting both image features and BEV
features. Therefore, when distilling the BEV networks, it
is crucial to jointly consider the two levels of information
and combine them organically, rather than simply adding or
stacking them together. In the following sections, we present
details of our proposed view-guided distillation, the compu-
tation of which requires the image feature distillation in , the
BEV feature distillation in , and joining the information in .

Image feature distillation Given a pair of aligned teacher
and student model, We first compute element-wise distilla-
tion loss on image features. We extract the image neck out-
put as the image features to be distilled. To improve the
smoothness of the distillation loss, we follow previous at-
tempts (Shu et al. 2021) to use a KL divergence-based dis-
tillation loss. Specifically, we consider the flattened image
features of the student and the teacher model as logits, which
we convert into probability distribution via a softmax func-
tion with temperature ϕτ , as defined in Eq. (2).

ϕτ (xi) =
exi/τ∑
j e

xj/τ
. (2)



Then we calculate the KL divergence of each camera’s
output separately to achieve the image feature distillation
loss, as in Eq. (3).

Limg =
τ2

B ·W ·H · C ×DKL

(
ϕτ (F

T
img), ϕτ (F

S
img)

)
, (3)

where B means batchsize, W means imgFeature width, H
means imgFeature height, C means imgFeature Channel,
and FT

img and FS
img denotes the imgFeature of teacher model

and student model respectively.

BEV feature distillation We carried out the second step
of distillation on BEV feature. As with image features, the
BEV features of student and teacher are first converted
into a probability distribution. Then we calculate the KL
divergence for each point on the BEV seature, as shown
in Eq. (4).

Lbev =
τ2

B · C ×DKL

(
ϕτ (F

T
bev), ϕτ (F

S
bev)

)
, (4)

where B means batchsize, C means BEVFeature Channel,
and FT

bev and FS
bev denotes the BEV Feature of teacher

model and student model respectively. We get a loss with
shape of [Hbev ×Wbev, 1].

View-guided distillation objective In the first two sec-
tions, we obtained the loss of each camera on the Img fea-
ture and the corresponding loss of each point on the BEV
feature. On the nuScenes data set, the camera external pa-
rameters are known, so we can get the distribution range
of each camera corresponding to the BEV feature. Then
we generate the mask of views which can be applied to
the image feature, that is, Mbev , which is the same as de-
fined in BEVFormer (Li et al. 2022). Mbev is a tensor
with four dimensions: number of cameras, batch size, BEV
Size(Hbev × Wbev), and 3D Height, with binary values in
each element. Flattening the last 2 dimensions gives the
Mbev on the 2d plane. With Mbev , the Limg calculated for
each camera can be extended to the corresponding loss for
each point on the BEV feature, that is, L̂img .

L̂img = Limg ⊙Mbev (5)

Mbev is calculated from the camera external parameters,
and it is a tensor with the shape of [6, Hbev ×Wbev], which
indicates the range of BEVfeature affected by each camera.
⊙ in crefeq:masked img loss denotes the hadamard product.

Finally, we use L̂img to get the final BEV distill objective,
View Guided Distillation, which is guided by the image dis-
till information of each view in Eq. (6)

Lvgd =

N·H·W∑
i=1

L̂img ⊙ Lbev (6)

Experiments
In this section, we first elaborate on the experimental
settings, then we evaluate both post-training quantization
(PTQ) (Nagel et al. 2019; Cai et al. 2020) and QAT methods
on the BEV networks. Based on the analysis of these results,
we propose QD-BEV to overcome shortcomings in PTQ and
QAT, and we dedicatedly compare our results with previous
works under different settings and constraints.

Table 1: PTQ results with different quantization bitwidth.

W-bit/A-bit Model NDS↑ NDS Drop mAP↑

32/32
Tiny 0.354 - 0.252
Small 0.479 - 0.370
Base 0.517 - 0.416

8/8
Tiny 0.351 0.8% 0.248
Small 0.477 0.4% 0.366
Base 0.487 5.8% 0.384

6/6
Tiny 0.312 11.9% 0.203
Small 0.430 10.2% 0.306
Base 0.402 22.2% 0.262

4/6
Tiny 0.246 30.5% 0.146
Small 0.369 23.0% 0.228
Base 0.226 56.3% 0.076

4/4
Tiny 0.034 90.4% 0.001
Small 0.034 92.9% 0.001
Base 0.023 95.6% 0.000

Table 2: QD-BEV results compared to baselines.

Input Size Model Model Size(MB) BOPS(Tera) NDS↑ mAP↑

384×1056 BEVDet-R50(Huang et al. 2021a) 203.3 94.11 0.381 0.304

450×800

BEVFormer-T(Li et al. 2022) 126.8 62.33 0.354 0.253

BEVFormer-T-DFQ(Nagel et al. 2019) 31.7 3.90 0.340 0.236

BEVFormer-T-HAWQv3(Yao et al. 2021) 15.9 1.46 0.348 0.234

QD-BEV-T (Ours) 15.9 1.46 0.372 0.255

720×1280

BEVFormer-S(Li et al. 2022) 225.6 236.13 0.479 0.370

BEVFormer-S-DFQ(Nagel et al. 2019) 56.4 14.76 0.467 0.356

QD-BEV-S (Ours) 28.2 5.53 0.479 0.374

900×1600
DETR3D(Wang et al. 2022) 195.7 520.60 0.425 0.346

FCOS3D(Wang et al. 2021) 200.3 1028.20 0.415 0.343

900×1600

BEVFormer-B(Li et al. 2022) 262.9 667.39 0.517 0.416

BEVFormer-B-DFQ(Nagel et al. 2019) 65.7 41.71 0.486 0.384

QD-BEV-B (Ours) 32.9 15.64 0.493 0.393

QD-BEV Results and Analysis
PTQ results We analyze the influence of different quanti-
zation bitwidth on post-training quantization. In Table 1, di-
rectly applying PTQ with less than 8-bit precision will lead
to a significant accuracy drop, especially when quantized to
W4A4 the results become pure noise with around 0 mAP. As
can be observed from Table 1, performing QAT is necessary
in order to preserve the accuracy while achieving ultra-low
bit quantization.

Progressive QAT results Since PTQ cannot achieve ultra-
low precision, we aim to apply QAT for 4-bit quantization.

From all our experiments, standard QAT methods which
directly quantize the whole network to the target bitwidth
will lead to unstable QAT processes, resulting in a gradient
explosion and a rapid decline in accuracy.

Consequently, we propose to use progressive QAT to con-
strain the quantization perturbation along the training pro-
cess. As an example, we plot the training curve of our pro-
gressive QAT in Figure 2, where we conduct W4A6 quanti-
zation on the BEVFormer-Tiny. We separate the progressive
QAT into 4 stages and iteratively quantize a new module
in each stage. As can be seen, there is an NDS drop at the
beginning of each stage, corresponding to the quantization
perturbation introduced by the quantized new module. We
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Figure 2: Progressive QAT. We observe that the precision
loss may become intolerable when we quantize the model in
one step. Thus, we propose progressive quantization-aware
training which divides the quantization of the whole model
into many phases. Progressive QAT can significantly im-
prove the stability of QAT as well as the accuracy it achieves.
The pink line in the figure represents the baseline NDS.

should note that progressive QAT is able to effectively re-
cover the NDS drop, and the final results obtained purely
with direct QAT is more than 5 points behind that of pro-
gressive QAT in our ablation study.

View-guided distillation results Although progressive
QAT is significantly superior to standard QAT, it still suf-
fers from fluctuation during training, as shown in Figure 3.
In order to obtain better accuracy and stability, we apply
view-guided distillation with the floating-point model as the
teacher and the quantized model as the student. The ef-
fect of VGD on W4A6 quantization of BEVFormer-Tiny
is shown in Figure 2. It can be seen from both figures that
VGD can bring a very stable and significant improvement
to the model. Benefiting from knowledge in both the im-
age domain and the BEV domain, QD-BEV networks are
able to fully recover the quantization degradation, and even
outperform the floating-point baselines. As shown in Ta-
ble 2, the NDS and mAP of the model outperform previ-
ous floating-point baselines as well as quantized networks.
Note that since there are no existing results for compact
BEV networks, we implement standard quantization meth-
ods DFQ (Nagel et al. 2019) and HAWQv3 (Yao et al. 2021)
on BEVFormer as a comparison. We apply W8A8 quantiza-
tion for DFQ (DFQ with lower bitwidth has intolerable accu-
racy degradation) and W4A6 for all QD-BEV models. As a
comparison, QD-BEV can achieve 0.493 NDS with only 33
MB model size, which is similar to the size of BEVFormer-
T-DFQ (0.340 NDS) and much smaller than BEVFormer-
Tiny (126.8 MB, 0.354 NDS).

Conclusions
In this work, we pioneer the usage of quantization to obtain
compact models for 3D object detection based on BEV. We
systematically study both PTQ and QAT on BEV networks
and showcase the major problems they are facing. Based on
our analyses, in our solution QD-BEV, we propose to apply
progressive QAT as well as the newly devised view-guided
distillation. QD-BEV addresses the stability problem of pre-
vious QAT methods and can alleviate the accuracy degra-
dation or even outperform the floating-point baselines. On
the nuScenes datasets, the 4-bit weight and 6-bit activation
quantized QD-BEV-Tiny model achieves 37.2% NDS with
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Figure 3: Training curve of view-guided distillation versus
QAT on W4A6 quantization of BEVFormer-Tiny.

only 15.8 MB model size, outperforming BevFormer-Tiny
by 1.8% with an 8× model compression.
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