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Abstract

Modern deep neural networks (DNNs) have a wide applica-
bility in many fields; however they are vulnerable mainly be-
cause of the use of supervised learning for their representation
learning. The features acquired through supervised learning
are optimal; hence, they are the minimum requirements that
allow the task to be discriminated without wasting resources.
This frequently leads to the neglect of common and natu-
ral features that are not important for discrimination, mak-
ing the network vulnerable to adversarial attacks. We recently
developed a novel learning method for applying competitive
learning, a classical unsupervised learning method, to modern
DNNs. To improve this method and make it more robust, we
attempted to mimic a real robust system in the wild. In par-
ticular, we simulated information processing in the brain. We
used a color space similar to human perception, separated the
information into color channels and spatial frequencies, and
introduced local signal normalization. The top-5 accuracy of
the ImageNet discrimination task was 40.73%, achieving the
state-of-the-art performance as a DNN without back propaga-
tion learning. It is expected that the method will enable robust
information processing in the wild using task-independent
features.

Introduction
Deep learning is a powerful artificial intelligence (AI) tech-
nique that was inspired by brain mechanisms and has
achieved groundbreaking results in several fields. However,
current deep learning methods rely heavily on back propa-
gation learning, which is considered an obstacle to the re-
alization of flexible and robust information processing like
that found in the brain.

As the name implies, back propagation learning proceeds
from the output side of the network to the input side, in the
opposite direction of information flow. Therefore, learning
is most effective at the output layer and diminishes as it ap-
proaches the input side. In transfer learning, this character-
istic is appropriate for modifying only the features on the
output side without significantly changing the features on
the input side. However, this implies that the learning and
information processing on the input side is weak, leaving it
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vulnerable to adversarial attacks (Goodfellow, Shlens, and
Szegedy 2014; Athalye et al. 2018).

To address this problem, it is natural to look for hints from
the brain, which is capable of robust information process-
ing in the wild. Recently, many studies have attempted to
develop new physiologically plausible learning methods for
deep neural networks (DNNs) based on brain mechanisms
(Bartunov et al. 2018; Nøkland and Eidnes 2019; Krotov
and Hopfield 2019). In this regard, we have been working
on developing classical and physiologically plausible com-
petitive learning (Fukushima 1980; Kohonen 1982) for use
with modern DNNs (Shinozaki 2021). In this study, we de-
veloped a method to achieve more robust image processing
by incorporating the information processing mechanism of
the brain in greater detail.

Methods
As a learning method without error back propagation, we
used our recently developed simple competitive learning
for convolutional neural networks with no inter-unit in-
teraction (Shinozaki 2021). This method learns with only
feed-forward signals by performing winner-takes-all (WTA)
computing between filters in the convolutional layer at each
position of the input. The gradient of competitive learning is
represented as follows:

∆wl,i =

{
−ρzl−1, if i = argmaxk ul,k

0, otherwise
(1)

where ρ is the competitive learning coefficient, which we
empirically set to 0.01. This gradient was used for con-
ventional stochastic gradient descent (SGD) to update the
weights, with each update being normalization by 2-norm.
Moreover, as in our previous study, we introduce a con-
science factor (DeSieno 1988) with a coefficient of 5.0 to
improve the efficacy of competitive learning.

The ReLU activation function used in conventional DNNs
is a type of threshold function, and its threshold is heavily
influenced by the weight bias learned through back prop-
agation learning. Therefore, in this study, which does not
use back propagation learning, we employed WTA as the
activation function rather than ReLU. This WTA activation
function, like the WTA in competitive learning, produces a
bundle of one-hot-vectors with only the maximum (winner)
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Figure 1: Schematic illustration of the proposed network structure. The RGB color input is converted to Lab color space and
then propagated in separate branches.

value of each location set to one. The bundle of one-hot-
vectors becomes a bundle of few-hot-vectors by subsequent
max pooling and propagates through the network.

This study attempts to incorporate the robust image pro-
cessing that occurs in the brain using these frameworks of
competitive learning in convolutional neural networks. Lu-
minance and color information are processed in separate
pathways in our brain during image processing (Nassi and
Callaway 2009). This separation allows for stable process-
ing of color information while maintaining shape informa-
tion; moreover, it is thought to provide robust discrimination
against illumination changes. To reproduce such informa-
tion processing, the current study used the Lab color space,
which is a color space reflecting human perception and sep-
arated the paths for each channel. The Lab color space con-
sists of three channels, ’L,’ ’a,’ and ’b.’ These channels cor-
respond to the gray scale, red-green axis, and blue-yellow
axis, respectively. Figure 1 shows a schematic illustration of
the network. The input image is converted from RGB to Lab
color space, and each channel is processed separately.

Input signals with different spatial frequencies are pro-
cessed also separately in the brain (Nassi and Callaway
2009). The spatial frequency processed in the convolutional
layer depends on the filter size. Therefore, we applied the
separation to the convolutional layer using the filter size
method, similar to the inception and network-in-network
models to achieve robust discrimination without relying on
a specific spatial frequency.

Additionally, to achieve more robust information process-
ing, local signal normalization was used. It has been reported
that normalization has a significant effect on the robustness
of signals in the brain (Carandini and Heeger 2012). There-
fore, we normalized local inputs by z-values for each recep-
tive field of the convolutional layer.

Experiments
We used the ImageNet dataset to perform discrimination
tasks to validate the effectiveness of the proposed method
(Russakovsky et al. 2015). The network was based on
Alexnet (Krizhevsky, Sutskever, and Hinton 2012), with
three convolutional layers and one all-combining layer. The
network was branched by color space and filter size, result-
ing in 36 paths in the final convolutional layer.

The convolutional layer had 32, 32, and 64 filter units for
each branch, and the filter sizes were 11 × 11, 7 × 7, and 3
× 3 for the first layer, 7 × 7 and 3 × 3 for the second layer,
and 3 × 3 and 1 × 1 for the third layer. The max pooling was
3 × 3, 3 × 3, and 4 × 4 with stride two. As a result, the num-
ber of dimensions of the input to the fully connected layer
was 36,864, which was significantly higher than AlexNet’s
8,192. In large models, the number of filters in the convo-
lutional layer was 64, 128, and 512 units for each branch,
and the number of dimensions of the input to the fully con-
nected layer was 294,912. The output dimensionality of the
fully connected layer was 1000, which was used for the Im-
ageNet identification.

We used unsupervised competitive learning without back
propagation error for the convolutional layer. For the fully
connected layer, only traditional error learning was used.
The network was trained using conventional SGD, with the
mini-batch size set to 32 for unsupervised competitive learn-
ing and 16 for error learning. The competitive learning co-
efficient was set to 0.01, and the number of iterations was
set to 75,000. The learning coefficient for error learning was
initially set to 0.01, then to 1/10 for each 20,000 iterations.
The final number of iterations for error learning was set to
60,000.

For the baseline, we used the L channel of the Lab color
space as a gray-scale signal to validate the color informa-
tion. We also used RGB, XYZ, YUV, and HSV color spaces
for comparison. Separated color signals were processed in



independent paths.
All codes were implemented using Python and Chainer

deep learning framework (v.4.5.0) (Tokui et al. 2015) with
GPU support. All experiments were run on NVIDIA Tesla
P100 16 GB with the CUDA (v.9.0) and cuDNN (v.7.1.4)
libraries. For color space conversion, we used scikit-image
(van der Walt et al. 2014).

Results
Table 1 shows the results of the discrimination task. When
the color channels were processed separately, the accuracy
was significantly higher than the results for the baseline gray
scale and our previous study, indicating the effectiveness
of the proposed method. In particular, a top-5 accuracy of
40.73% was achieved when using a large model, which is
the-state-of-the-art as a learning method without back prop-
agation learning. However, when processing without sepa-
rating the color channels, the top-5 accuracy is below the
baseline, particularly in the Lab color space. This suggests
that color information interferes with the processing of lu-
minance information.

Figure 2 shows the filters of the first convolutional layer
acquired by unsupervised competitive learning in the Lab
color space condition. The spatial features of various ori-
entations, but of similar spatial frequencies, are acquired in
all cases. This is because the features acquired by compet-
itive learning are dependent on their occurrence, and as a
result, the features with the highest occurrence and lowest
spatial frequency are dominant. On the other hand, the fil-
ter sizes vary greatly from 11 × 11, 7 × 7, and 3 × 3, so
processing them in parallel can cover a wide range of spa-
tial frequencies. For the color channels, by separating the
gray-scale channels with the highest occurrence, the other
channels are able to acquire features with color information.

Figure 3 shows the filter of the first convolution layer in
the case of RGB color space. The basic trend is the same as
in the case of Lab color space.

Figure 4 shows the filters of the second and third convolu-
tional layers acquired by unsupervised competitive learning
under Lab color space conditions. The input dimension is
divided into three parts, and each dimension is assigned to
RGB for pseudo-color representation. Each filter has a dis-
tinct spatial structure, indicating that some significant learn-
ing representation has been acquired.

Figure 5(a,b) shows the filters of the first convolutional
layer when learning without separating the color channels
in (a) RGB or (b) Lab color space. In both cases, the color
information is mixed up, and proper representation learning
has not been performed.

Figure 5(c) shows the filter of AlexNet’s first convolu-
tional layer trained by back propagation learning under the
same conditions as the proposed method. Grayscale and
color are automatically learned separately, and the features
of various spatial frequencies are learned in grayscale.

Conclusion
In this study, we attempted to develop a robust DNN in
the wild by combining representation learning with unsu-

Method Top-5 Acc
Shinozaki, 2021 26.16
Gray (baseline) 25.69
RGB 33.75
Lab 33.77
XYZ 32.32
YUV 33.14
HSV 32.72
RGB combined 25.71
Lab combined 18.66
Lab Large 40.73
Alexnet 49.02
FA (Bartunov et al. 2018) 17.46

Table 1: Top-5 accuracies for Imagenet dataset

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Filters of the first convolutional layer acquired
through unsupervised competitive learning in Lab color
space. The first, second, and third rows correspond to 11 ×
11, 7 × 7, and 3 × 3 filters, respectively. (a,d,g), (b,e,h), and
(c,f,i) correspond to L, a, and b channels, respectively.

pervised competitive learning and mimicking the informa-
tion processing of natural image recognition in the brain. We
achieved the state-of-the-art results as a DNN without super-
vised back propagation learning using the ImageNet dataset.

We used only one fully connected layer, which is respon-
sible for the output, owing to the limitation of not using error
back propagation; however, further performance improve-
ment can be expected by increasing the number of fully con-
nected layers. Furthermore, rather than using unsupervised
competitive learning to train all convolutional layers, it is
possible to use competitive learning only for the early layers
and back propagation learning for the subsequent layers.

The proposed method achieves task-independent acquisi-
tion of common and natural features through unsupervised
competitive learning. This enables the use of features with
significantly higher dimensionality than conventional DNNs
using back propagation learning and is expected to result



(a) (b) (c)

Figure 3: Filters of the first convolutional layer acquired
through unsupervised competitive learning in RGB color
space. Only 11 × 11 filters are represented. (a), (b), and (c)
correspond to the red, green, and blue channels, respectively.

(a) (b)

Figure 4: Filters of the (a) second and (b) third convolutional
layers acquired through unsupervised competitive learning
in Lab color space.

in more robust discrimination in the wild. However, this re-
search is ongoing and we have not been able to evaluate
its robustness quantitatively because we have not performed
sufficient ablation experiments. We would like to discuss
methods for evaluating the robustness against adversarial at-
tacks and in various practical applications in the wild during
the workshop.
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