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Abstract

Recent Neural Architecture Search (NAS) solutions have pro-
duced impressive results training super-networks and then
deriving subnetworks, a.k.a. child models that outperform
expert-crafted models from a pre-defined search space. Effi-
cient and robust subnetworks can be selected for resource-
constrained edge devices, allowing them to perform well
in the wild. However, constructing super-networks for arbi-
trary architectures is still a challenge that often prevents the
adoption of these approaches. To address this challenge, we
present BootstrapNAS, a software framework for automatic
generation of super-networks for NAS. BootstrapNAS takes
a pre-trained model from a popular architecture, e.g., ResNet-
50, or from a valid custom design, and automatically creates a
super-network out of it, then uses state-of-the-art NAS tech-
niques to train the super-network, resulting in subnetworks
that significantly outperform the given pre-trained model. We
demonstrate the solution by generating super-networks from
arbitrary model repositories and make available the resulting
super-networks for reproducibility of the results.

Introduction

The great variety of edge devices in which Deep Learning
models might be deployed has motivated the development
of solutions for optimizing these models and improving their
performance on a selected device. A successful approach has
been to use Neural Architecture Search (NAS) to discover
efficient and robust models that can be deployed in the wild
on a particular edge device.

Early NAS solutions trained each candidate architecture
from scratch, taking a significant amount of time to pro-
duce decent results. Weight sharing has allowed more effi-
cient NAS approaches that maintain a single structure, i.e., a
super-network, sometimes referred to as the one-shot (Ben-
der et al. 2018; Liu, Simonyan, and Yang 2018; Pham et al.
2018; Cai, Zhu, and Han 2019; Xie et al. 2020; Guo et al.
2020), single-stage (Yu et al. 2020), or once-for-all (Cai
et al. 2020) network depending on other properties of each
NAS approach. A few of these approaches are hardware-
aware, for instance, by incorporating the target device’s la-
tency measurements, but are limited to a single target de-
vice , e.g., (Cai, Zhu, and Han 2019), having to run again
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the NAS procedure when an optimal model for a new target
device is requested. More recently, NAS approaches have
been able to decouple train and search stages, enabling a
single training session and the repeated search of new de-
rived models for multiple target devices with different hard-
ware configurations (Cai et al. 2020; Yu et al. 2020). These
once-for-all or single-staged super-networks produce large
spaces of subnetworks. The weights of the super-network
are optimized and exploration of suitable sub-networks is
guided by a search strategy and a performance estimation
strategy (Elsken, Metzen, and Hutter 2019). In some cases,
these approaches produce models that can be immediately
deployed, e.g., (Cai, Zhu, and Han 2019; Cai et al. 2020; Yu
et al. 2020), while in other cases, additional fine-tuning of
the candidate subnetworks can yield better accuracy. Smaller
subnetworks might satisfy the requirements of resource-
constrained devices while maintaining the accuracy of big-
ger subnetworks.

The construction of the super-network, and hence the gen-
eration of the search space, present several challenges. Given
that there is no consensus on the optimality of one-shot
NAS, driven by doubts on whether super-network optimiza-
tion aligns with the objective of NAS (Zhang, Zhang, and
Yang 2021), generating a search space that contains well
performing sub-networks needs to be automated effectively.
Further, existing search spaces are designed for research en-
deavors which may not align with tasks for which a neural
network has to be deployed.

Expert practitioners have to construct these super-
networks for instance by overparameterizing a well-known
architecture, e.g., MobileNet-V3 (Howard et al. 2019). How-
ever, this is usually a complicated process that prevents
an average user from further optimizing their existing pre-
trained models so they can improve their performance when
deployed in the wild.

We present BootstrapNAS, a software framework for au-
tomatic generation of NAS super-networks. BootstrapNAS
is implemented in the Neural Network Compression Frame-
work (NNCF) (Kozlov et al. 2020). NNCF works with Py-
Torch and TensorFlow, and supports a wide range of com-
pression algorithms such as quantization and pruning. We
utilize NNCF’s graph tracing and analysis capabilities to en-
able the BootstrapNAS solution.

Our contributions can be summarized as follows:



¢ A software framework with a set of methods for auto-
mated super-network generation.

* The application of state-of-the-art methods for training
the automatically generated super-network.

* Demonstration of the feasibility of the proposed meth-
ods and preliminary results on two examples of super-
networks.

Automated Generation of Super-Networks

Table 1: Notation

) Super-network L7 Set of layers of

a;  Subnetwork i 1§ Layer i of Q

Qmin Minimal subnetwork L?  Set of layers of a;

AmazMaximal subnetwork l;- Layer j of a;

m  Pre-trained model Lt Set of static layers

A Set of all subnetworks of a;

A, Set of Pareto-optimal L¢  Set of elastic layers
subnetworks of a;

Super-network. A super-network, (2, is a neural network
that is composed of a set of layers, L, which for our pur-
poses we divide into two subsets, L¢! (elastic layers) and L
(static layers), i.e., L* = L$ U ?, and a set of weights,
W, associated with those layers. Notice that in our formu-
lation, we start by considering a super-network, as a typ-
ical neural network, and it is through BootstrapNAS’ top-
down approach that elasticity (defined below) is automati-
cally added, and which allows the later derivation of subnet-
works.

Subnetwork. A subnetwork or child model, a;, is a neu-
ral network that shares some (or all) of the elements of the
super-network, €2, s.t., if Lt is the set of the layers in a;, then
L C L. Notice that L’ is also composed of the two types
of layers introduced above, i.e., L' = L U Lt.

Static Layers. We refer to L% (or LS for that matter) as
static layers, and, as we will discuss below, they have a fixed
configuration for all the subnetworks and the super-network,
ie,Vi(le L\ < 1€ LY.

Elastic Layers. L¢ are those layers that can have variable
values in their properties. For instance, in the case of a con-
volution layer, they might have variable values for its width
(number of channels) or kernel size, e.g., a layer with x or y
number of channels, and zxz kernels., e.g., 7x7. We refer to
Lt as elastic layers.

We denote A to be the set of all the subnetworks (which
includes the super-network). The literature uses the term
elasticity to describe the property of layers that can vary
their configurations, e.g., layer j in subnetwork a; i.e., l;,
might have x number of active channels, while another sub-
network, ay, might have y number of active channels for the
same layer, lf. Although the same layer is present in both
subnetworks, their layer configurations might be different.
Thus, subnetworks are partitions of the super-network, and

have different values for the properties of their layers, e.g.,
width or kernel size in the case of convolution layers, unless
the particular subnetwork in consideration is also the super-
network.

Pre-trained Model to Super-Network. BootstrapNAS
uses NNCF’s capabilities to trace a given pre-trained model,
m, and convert it into a super-network, (2, s.t., if L™
are the layers in m, VI(I € L™ < | € L%) and
W< = W™, The conversion procedure must guarantee that
both models, that is, the pre-trained model and the super-
network, will produce similar results on a dataset, D,
i.e., Cost(m, Dyq1) = Cost(€), Dyg). This is validated by
BootstrapNAS after the super-network has been generated.
Before conversion of a pre-trained model to a super-network
all layers are static, i.e., > = L. BootstrapNAS detects
layers that can be made elastic, e.g., a convolution layer, by
checking the type of the underlying operation in the layer in
consideration and comparing it to the supported operations
that can be made elastic. The selected static layers becomes
elastic without rewriting the model’s code by injecting a
mechanism that can capture inputs and parameters before
the layer’s execution, apply transformations on the layer’s
tensors and run the underlying operation with the modified
parameters and inputs.

In addition to varying its width and internal layer prop-
erties, a subnetwork, a;, can be shallower than its parent
super-network, so it is possible that |L?| may be less than
|L%}|. The change in depth is accomplished by omitting in-
dividual layers or groups (blocks) from the super-network
to derive subnetwork a;. BootstrapNAS accomplishes this
omission of layers by temporarily removing them from the
computational graph if the subnetwork is selected during
training. During the conversion of the pre-trained model to
a super-network, BootstrapNAS automatically detects lay-
ers or blocks that can be skipped by analyzing groups of
layers, and determining whether they could be skipped/re-
moved without creating inconsistencies between the output
tensors of the previous block and the input dimensions of
the following block. BootstrapNAS checks for inconsisten-
cies that might occur when activating certain number of
channels in a layer, since this number has to be consistent
with its adjacent layer(s).

BootstrapNAS automatically generates the NAS search
space by creating a configuration of elasticity for each layer.
It starts by considering the maximum possible value of a
layer’s property based on the value of this property on the
original pre-trained model, e.g., number of channels for
a layer, and then including alternative configurations with
smaller values and steps. For instance, if the pre-trained
model used 512 channels in a layer, BootstrapNAS can gen-
erate alternative configurations, e.g., {512, 256, 128} for the
possible number of channels in the derived subnetworks.
The number of alternatives, stopping criteria and decreasing
step is easily configurable. Otherwise, defaults are used. The
search space generation also takes into account the blocks
that might be skipped to model how subnetworks will vary
in depth. A super-network can easily end up deriving billions
of possible subnetworks, depending on how many possible



configurations BootstrapNAS might allow on each layer.

Minimal and Maximal Subnetworks. A subnetwork a;
is considered to be the minimal subnetwork, a,,in, if it con-
figuration uses the minimal possible values for each elastic
dimension on each elastic layer. On the contrary, a differ-
ente subnetwork a; is considered to be maximal if it uses
the maximal value for each elastic dimension on each elas-
tic layer. Note that a,,,, is equivalent in its architecture to
the given pre-trained model.

Super-Network Training and Subnetwork
Search

The super-network generated from the pre-trained model is
suitable to the application of state-of-the-art super-network
training techniques. For instance, a proven algorithm is Pro-
gressive Shrinking by (Cai et al. 2020). As its name sug-
gests, it trains the super-network by allowing the sampling
of smaller random subnetworks at each training stage (ker-
nel size, depth, and width), hence increasing the variety of
subnetwork configurations. There are other techniques for
training super-networks. For instance, instead of focusing in
subnetworks of a decreasing size for each stage, Bootstrap-
NAS can apply the “sandwich” rule proposed in (Yu and
Huang 2019), in which, at each batch of data, a few sub-
networks are sampled: the minimal subnetwork, a,,;,, the
maximal subnetwork, a,,q, and other n randomly sampled
subnetworks. The gradients are aggregated and the weights
of the super-network are updated accordingly.

Knowledge distillation can also be applied during train-
ing. The soft labels from the original pre-trained model, m
or from the maximal subnetwork, a,,,, can be used to com-
pute the loss of the sampled subnetworks. Using the soft la-
bels of a,,,q; is referred to as inplace distillation in the liter-
ature (Yu and Huang 2019).

BootstrapNAS’ implementation has an elasticity handler
object that maintains a registry of the possible configurations
that a elastic layer (or the set of elastic blocks in the case
of depth) might take, allowing for an efficient sampling of
subnetworks. When a subnetwork configuration is selected,
BootstrapNAS activates the corresponding configuration at
each layer, so the forward and backward passes can be done.

The level of elasticity depends on the size of the given pre-
trained model, as well. An overparameterized pre-trained
model will allow for the generation of a larger search space.
Notice that although an immense number of subnetworks
can be derived from the super-network, the space required to
store all this information never exceeds the space required to
store the super-network, which is a great benefit of weight-
sharing approaches. BootstrapNAS’ cost to maintain the in-
formation of the possible configurations that a layer can have
is minuscule in comparison with the size of the model.

As defined above, A is the set of all the possible sub-
networks that can be derived from a super-network. Once
BootstrapNAS completes the super-network training stage,
its next goal is to find & Pareto-optimal subnetworks. That
is, BootstrapNAS constructs a set, A, C A, s.t., |4,] = k.
BootstrapNAS currently uses the Non-dominated Sorting

Genetic algorithm IT (NSGA-II) by (Deb et al. 2002) as de-
fault algorithm to search for the set of Pareto-optimal sub-
networks. NSGA-II evolves a population and then ranks the
various configurations to produce a set of non-dominated
solutions. Although BootstrapNAS currently uses NSGA-II
by default, nothings prevents BootstrapNAS to incorporate
other search algorithms in a subsequent search.

Evaluation of Two Examples of Automatically
Generated Super-Networks

Experimental Setup. To demonstrate the capabilities for
super-network generation of BootstrapNAS (and posterior
super-network training and searching), we used the al-
ready well-optimized models from (Phan 2021), a repos-
itory which stores popular models that have been effi-
ciently trained with CIFAR-10 (Krizhevsky 2009). We se-
lected ResNet-50 (He et al. 2016) and MobilenetV2 (Sandler
et al. 2018) for BootstrapNAS to generate the corresponding
super-networks, train them, and then search for outperform-
ing subnetworks. For the search stage, BootstrapNAS used
NSGA-II with a population size of 50, crossover rate of 0.9,
and a mutation rate of 0.02 to search for a Pareto-optimal
set.

Results. BootstrapNAS successfully converted the pre-
trained models into super-networks. As Illustrated by Fig-
ure 1, NSGA-II successfully discovered outstanding sub-
networks after 3,000 subnetwork evaluations. These subnet-
works outperformed the original pre-trained model in both
objectives (MACs and accuracy).

As Illustrated in Figure 1, BootstrapNAS’ ResNet-50
super-network contains a myriad of subnetworks that out-
perform the given pre-trained model. For instance, Boot-
strapNAS B-RC requires ~ 2.81x fewer MACs than the
given pre-trained model while slightly improving the top 1
accuracy (from 93.65% to 93.70%). If a small drop in ac-
curacy of ~ 1% is allowed, BootstrapNAS discovers sub-
networks, e.g., BootstrapNAS A-RC, that require ~ 3.65x
fewer MACs than the original pre-trained model.

In the case of BootstrapNAS’ MobilenetV2 super-
network, NSGA-II produces a Pareto front with several sub-
networks that outperform the given pre-trained model, e.g.,
BootstrapNAS B-MC, requires ~ 2.39x fewer MACs than
the pre-trained model while maintaining its top 1 accuracy
(~ 93.91%). If a small drop in accuracy of ~ 1% is allowed,
BootstrapNAS discovers subnetworks, e.g. BootstrapNAS
A-MC, that require ~ 3.56x fewer MACs than the pre-
trained model.

Conclusion

BootstrapNAS is a software framework within NNCF for au-
tomatic generation of NAS super-networks. BootstrapNAS
takes as input a pre-trained model, analyzes its architec-
ture, converts it into a super-network, applies state-of-the-art
techniques for training the super-network, and then automat-
ically discovers outperforming subnetworks.

Currently, BootstrapNAS’ focus is on convolutional neu-
ral networks. In the future, we plan to support other do-
mains, e.g., Natural Language Processing (NLP) models.
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Figure 1: Subnetwork search using NSGA-II on the FP32 model spaces of two super-networks automatically generated by
BootstrapNAS from pre-trained models. Each plot illustrates the progression of NSGA-II when discovering a Pareto front. The
darker marks represent subnetworks evaluated late in the search process. All subnetworks above the dashed lines outperform
the pre-trained models given as input, in both objectives, accuracy and MACs. All subnetworks to the left of the input model
outperform the input model in MACs. We highlight two subnetworks in addition to the given pre-trained model.

BootstrapNAS is an open-source project that will be re-
leased as part of the Neural Network Compression Frame-
work (NNCF). The example super-networks presented in
this document are available for reproducibility of the results.
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