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Abstract

Spiking neural networks (SNNs) as a kind of efficient model
by mimicking the spiking nature of brain neurons has have
attracted more and more attention. It transmits binary spike
signals between network units when the membrane poten-
tial exceeds the firing threshold. Benefit from the information
paradigm, its activations can be limited to 1-bit spikes thus
multiplications can be replaced by additions, which are more
energy saving. However, quantifying the membrane potential
to 0/1 spikes will inevitably induce the error. In this paper, we
first notice the quantization error in SNNs and propose the
membrane potential rectification (MPR) function. The MPR
function can reduce quantization error by redistributing the
membrane potential to a new value closer to spikes than it-
self. Experimental results show that SNNs with MPR func-
tion outperform their vanilla counterparts on CIFAR-10(100)

Introduction
Deep neural networks (DNNs) have demonstrated success
in many fields, including object detection and recognition
(He et al. 2016), object segmentation(Ronneberger, Fischer,
and Brox 2015), object tracking(Bewley et al. 2016), etc.
To further improve accuracy, more and more complex mod-
els are proposed, ranging from ResNet(He et al. 2016) to
transformer (Vaswani et al. 2017), and so on. However,
their increasing complexity poses a new challenge to deploy
such models to power-constrained devices, thus becoming
an impediment to widespread deployment in many applica-
tions. To address this problem, there have been several ap-
proaches developed, such as quantization(Gong et al. 2019;
Li, Dong, and Wang 2019; Li et al. 2021b), pruning(Zhang,
He, and Jian 2017), knowledge distillation(Polino, Pascanu,
and Alistarh 2018), spiking neural networks(SNNs)(Fang
et al. 2020; Wu et al. 2018a; Li et al. 2021a,c), and so on.
Among them, SNNs as a biology-inspired method mimick-
ing the spiking nature of brain neurons provide a unique
way to reduce energy consumption. A spiking neuron in-
tegrates the inputs over time and fires a spike output when-
ever the membrane potential exceeds a threshold. The way
dealing with 0/1 spike to transmit information enjoys the ad-
vantage of multiplication-free inference by converting mul-
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Figure 1: The difference of SNNs w/ & w/o MPR function
for neuron firing process in a layer. The membrane potential
will be redistributed to reduce the quantization error in the
SNNs with MPR function.

tiplication to additions. Furthermore, SNNs can greatly save
energy and run efficiently implemented on specialized neu-
romorphic hardwares, such as SpiNNaker(Khan et al. 2008),
TrueNorth(Akopyan et al. 2015), Darwin(Shen et al. 2015),
Tianjic(Pei et al. 2019), and Loihi(Davies et al. 2018), due to
these hardwares provides a new non-von Neumann comput-
ing paradigm for SNNs that the storage unit and the com-
puting unit are integrated thus eliminating the cost if data
transfer.

Despite the attractive benefits, when transmitting infor-
mation by quantifying the membrane potential to 0/1 spike,
there is still a huge performance gap between existing SNN
models and their DNN counterparts. Many works attribute
the performance degradation to that the backward propa-
gation can hardly access the accurate gradients caused by
the discrete spike representation, and then surrogate gradi-
ent (SG) approaches are proposed by them(Wu et al. 2018b;
Neftci, Mostafa, and Zenke 2019). In the literature, the rect-
angular function (Wu et al. 2018b,a; Zheng et al. 2020) has
been widely used for approximation. Here, we provide a
new perspective and argue that quantization itself inevitably
brings large deviations between the original data and their



quantization values, thus inducing the error in information
transmission and limited performance of SNNs.

To verify our guess, in this paper the Membrane Poten-
tial Rectification (MPR) function is introduced to reduce the
quantization error through adjusting the membrane potential
to approach the spikes (see the different neuron firing pro-
cess of SNNs w/ & w/o MPR function in figure 1). Exten-
sive experiments over CIFAR-10(100) show that SNNs with
MPR can consistently outperform vanilla SNNs. To our best
knowledge, this is the first work that has noticed the quan-
tization error in SNNs and provides a simple but effective
method to handle this problem.

Preliminary
An SNN adopts a new biology-inspired spiking neuron
model that accumulates inputs along the time dimension as
its membrane potential and fires a spike when the poten-
tial exceeds the threshold, which makes it much different
from its DNN counterpart. Here, for better expression we
will first introduce the special neuron model in SNNs, then
the threshold-dependent Batch Normalization (tdBN), a nor-
malization technique focuses on both spatial dimension and
temporal dimension, which is also adopted in our paper.

Spiking Neuron Model
The fundamental computing unit of SNNs is the spiking neu-
ron model. A unified model to describe the dynamics of all
kinds of spiking neurons is given in a recent work (Fang
et al. 2020), and we borrow the description here as follows.

H[t] = f(V [t− 1], X[t]), (1)
O[t] = Θ(H[t]− Vth), (2)

V [t] = H[t](1−O[t]) + VresetO[t], (3)
where X[t], H[t], and O[t] are the input, membrane poten-
tial, and output spike at the timestep t, respectively. Vth is the
firing threshold, and is set as 0.5 in the work. Θ is the step
function defined by Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for
x < 0. Vreset denotes the reset potential set as 0 in the pa-
per. The different choice of function f(·) can describe differ-
ent spiking neuron models. Leaky Integrate-and-Fire (LIF)
model is adopted in the work and then Eq. 4 can be updated
as

H[t] = V [t− 1] + τX[t], (4)
where τ denotes the membrane time constant and is 0.25 in
our method.

Time-dependent Batch Normalization
Batch Normalization (BN) techniques are widely used to
train very deep layers in DNNs, since they can avoid gra-
dient vanishing or explosion during the optimization. How-
ever, BN is designed to normalize the spatial feature maps in
DNNs, and the additional temporal dimension and special
activation mechanism of SNNs need a specially-designed
normalization method. Recently, a threshold-dependent
Batch Normalization technique is proposed, which not only
normalizes the feature maps of SNNs in the spatial paradigm

but also in the temporal dimension (Zheng et al. 2020). In
more detail, let Xt represent the a pre-synapse input maps at
timestep t. Then X = (X1,X2, · · · ,XT ) will be normalized
by

X̃ =
αVth(X − E[X])√

V ar[X] + ϵ
, (5)

Y = λX̃ + β, (6)
where α is a hyper-parameter, ϵ is a tiny constant, λ and
β are two learnable parameters, E[X] and V ar[X] are the
mean and variance of X statistically estimated over the Mini-
Batch. It can be seen that it’s a bit like 3-dimension BN
in DNNs, but the normalized tensor of tdBN will multiply
αVth, which can assist the SNN model to maintain appro-
priate firing rate. We adopt this technique in the work.

Methodology
In this section, we want to propose a function to redistribute
the membrane potential before it is operated by the step
function, Θ. Before we give the details of the MPR func-
tion, we try to formulate the quantization error first.

Quantization Error
Since the SNN needs to quantify the real values into 0/1
spikes, it will undoubtedly result in the quantization error.
However, the quantization errors corresponding to different
membrane potentials are different. Obviously, a value closer
to the quantization spike enjoys less quantization error. We
define the quantization error as the square of the distance be-
tween the membrane potential and its corresponding quanti-
zation value the following:

Lq = (x− vq)
2 (7)

Membrane Potential Rectification (MPR) Function
The MPR function should satisfy three conditions as fol-
lows:

• The value of derived membrane potential by it should be
closer than the value of the initial membrane potential to
ensure the quantization error reduction.

• It should not put a value less than Vth to a value greater
than Vth and vice versa. Otherwise, the neuron output
will be changed.

• When the value of membrane potential is 0/1, the ob-
tained membrane potential value should be 0/1 at the
same time.

Based on the above three points, we advise the MPR
Function resort to an asymptotic symmetrical function:

φ(x) =
1

2tanh(k/2)
tanh(k(x− 1/2)) +

1

2
, (8)

where the coefficient k determines the shape of the asymp-
totic function. Obviously, the above three conditions can
all be satisfied by the recommended function. Fig. 2 illus-
trates the influences of k on the asymptotic function. When
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Figure 2: The response curves of asymptotic function under
different values of the coefficient, k. The blue curves repre-
sent the spike activity function.

k becomes larger, the response curve of the MPR function
gradually approaches the step function, and this undoubtedly
will reduce the quantization error further. However, large k
will induce the gradient vanishing and explosion problem in
the backward propagation. Hence, an idea k should be cho-
sen through experiments. It should be noted that the redis-
tributed membrane potential by MPR function is only used
for narrowing the gap between the true membrane potential
and the quantization spike, but will not replace the true po-
tential in the LIF neural model. The new dynamics of the
LIF model can be updated as follows:

H[t] = V [t− 1] + τX[t], (9)

Ĥ[t] = φH[t], (10)

O[t] = Θ(Ĥ[t]− Vth), (11)

V [t] = H[t](1−O[t]) + VresetO[t] (12)

Experiments
We evaluate the performance of SNNs with MPR func-
tion where the k ranges from 1 to 7 for classification tasks
on CIFAR-10(Krizhevsky, Nair, and Hinton) and CIFAR-
100(Krizhevsky, Nair, and Hinton) datasets. We employ the
widely-used spiking ResNet20(Rathi and Roy 2020; Sen-
gupta et al. 2019) as the backbone and encode the images to
binary spike using the first layer of the SNN, as adopted in
recent works (Rathi and Roy 2020; Fang et al. 2020, 2021).
We adopt the SGD optimizer with 0.9 momentum and a
learning rate of 0.01 cosine decayed(Loshchilov and Hut-
ter 2016) to 0. The batch size is set to 128. The rectangular
function is also appointed as the particular pseudo derivative
of spike firing in the work. All of the experiment results are
summarized in Tab.1.

It can be seen in the results, the SNN models with MPR
function where k is no more than 5 can achieve higher ac-
curacy than the vanilla SNN counterparts, and The SNN

Table 1: Results for MPR function.

Datasets Timesteps Methods Accuracy

CIFAR-10

2

w/o MPR 89.29%
w/ MPR, k = 1 90.26%
w/ MPR, k = 3 90.51%
w/ MPR, k = 5 89.80%
w/ MPR, k = 7 87.21%

4

w/o MPR 90.81%
w/ MPR, k = 1 92.13%
w/ MPR, k = 3 92.24%
w/ MPR, k = 5 91.65%
w/ MPR, k = 7 90.56%

6

w/o MPR 91.62%
w/ MPR, k = 1 92.69%
w/ MPR, k = 3 92.84%
w/ MPR, k = 5 92.31%
w/ MPR, k = 7 91.33%

CIFAR-100

2

w/o MPR 62.59%
w/ MPR, k = 1 63.03%
w/ MPR, k = 3 63.29%
w/ MPR, k = 5 63.14%
w/ MPR, k = 7 60.58%

4

w/o MPR 63.57%
w/ MPR, k = 1 66.03%
w/ MPR, k = 3 66.73%
w/ MPR, k = 5 66.38%
w/ MPR, k = 7 64.65%

6

w/o MPR 65.09%
w/ MPR, k = 1 67.43%
w/ MPR, k = 3 67.61%
w/ MPR, k = 5 67.57%
w/ MPR, k = 7 65.21%

models with k = 3 can obtain the best results on both CI-
FAR10 and CIFAR100. It verifies our guess that the k of
MPR function can not be too large, otherwise, the gradient
vanishing and explosion problem will be induced and thus
affects the SNN performance. The improvement by MPR
function is notable. On CIFAR-10, our models can achieve
1.22%, 1.43%, and 0.69% top-1 accuracy increments with 2,
4, and 6 timesteps respectively. On CIFAR-100, MPR func-
tion demonstrates a more excellent ability. The SNN with
the MPR function achieves a 3.16% absolute increment for
timestep = 4.

To further show the effect MPR function in SNNs intu-
itively, in Fig. 3, we visualize the comparison of the mem-
brane potential before and after redistribution of the last
layer of the first block in ResNet20 on CIFAR-10 respec-
tively. From the figure, we can observe that the SNN with
MPR function enjoys less quantization error. Experimental
results also confirm the superiority of our method. We com-
puted the average quantization error of the membrane poten-
tial before and after redistribution respectively. The average
quantization error of the proposed method is 0.053, while
that of the baseline method is 0.216, which is much bigger.
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Figure 3: The membrane potential distribution of before
(left) and after (right) being adjusted for the specific layer
in ResNet20.

Conclusion
We first noticed the quantization error in the SNNs and pre-
sented the membrane potential rectification (MPR) function
to solve it. Extensive experiments verified that SNNs with
MPR function consistently achieve better performance than
the vanilla SNNs. Although the improvement in model per-
formance is very significant, more datasets and more neural
backbones still need to be verified.
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