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Abstract

Generative adversarial networks (GAN) provide a promising
idea in achieving steganography-without-embedding (SwWE)
where the carrier (cover) remains intact without any modifi-
cation like traditional embedding based image steganography
algorithms. In SWE with GAN, the noises are automatically
generated and mapped to the recoverable secret information.
Unfortunately, the state-of-the-art (SOTA) SwE techniques
with GAN are still in their infancy and not prepared for the
adversarial attack where the model could be easily stolen and
the parameters could be inferred by attackers as well. In such
adversarial circumstances, attackers could easily confuse or
deceive the receivers intentionally, which cause serious se-
curity issues in transmitting information with steganography
techniques. In this paper, we propose a GAN-based SWE by
introducing asymmetric encoding and decoding key in the
embedding and extracting stage, respectively, for protecting
the safety of our embedded message, which totally satisfies
the Kerckhoffs’s principle of cryptography. Experimental re-
sults show that our proposed approach could effectively em-
bed secret information and successfully evade the adversarial
attacks. Moreover, our research findings also pose a new in-
sight for developing secure steganography algorithms against
adversarial attacks for both white-box and black-box settings.

Introduction

With the rapid development of deep learning (DL), infor-
mation hiding steps into a new milestone where the au-
tomatic embedding requires less much human-efforts than
ever before. In the traditional information hiding (Bamatraf,
Ibrahim, and Salleh 2010; Holub and Fridrich 2012; Holub,
Fridrich, and Denemark 2014; Guo, Ni, and Shi 2014),
namely steganography for secret communication via mul-
timedia and digital watermarking for protecting copyright,
large domain knowledge is required for designing powerful
steganography against being detected by steganalysis (You,
Zhang, and Zhao 2020), or robust watermarking to defend
the malicious watermark attacks (Hosam 2019; Geng et al.
2020). Studies have shown that the position for embedding
could be learned and SwWE could be also achieved with the
advances of GANs (Yamamoto, Song, and Kim 2020; Yu
and Pool 2020; Kong, Kim, and Bae 2020).
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The SOTA DL-based steganography algorithms (Wang
etal. 2018; Zhang, Dong, and Liu 2019; Ke et al. 2019; Tang
et al. 2019; Zhang et al. 2019a; Yu 2020; Liu et al. 2020;
Ghamizi et al. 2021) generally fall into two categories, i.e.,
DL-based steganography with embedding and DL-based
steganography without embedding. The first category com-
bines DL with traditional embedding based steganography,
aiming to find more suitable embedding carriers, more ap-
propriate embedding locations, and more optimized distor-
tion function. The second category directly uses the DL gen-
erated images as stego without any introduced, thus avoid
being detected by steganalysis based on the embedding fea-
tures. In generating the DL-based SwWE, a sender Alice trains
a generator to generate “natural” image (stego) that hides
secret information, while a receiver Bob uses a trained ex-
tractor to recover the secret information from the received
stego. During the training of the generator, as general GAN,
a discriminator plays the role in making the generated im-
age more “real”’. However, the SOTA DL-based SwE is vul-
nerable to the adversarial attacks (Auernhammer, Kolagari,
and Zoppelt 2019; Wang et al. 2020a) in both white-box and
black-box settings, which calls for effective techniques to
address this issues.

In the white-box adversarial attack, we consider the fol-
lowing two threats, 1) the generator and its parameters are
stolen by attackers; and 2) the extractor and its parameters
are stolen by attackers. In the first case, the attacker could
generate and transmit a confused stego by the obtained gen-
erator to the receiver. In the second case, the attackers could
extract the secret message from the intercepted stego via
their obtained extractor. In the black-box adversarial attack
(Wang et al. 2020b), assuming that attackers have obtained
large numbers of secret message and stego pairs by query-
ing, then they can train their own extractor which has the
same or similar capabilities as the original extractor. Unfor-
tunately, both white-box and black-box cases pose a safety
threat to the secret communication of GAN-based SwWE.

A straightforward idea for addressing the two aforemen-
tioned attacks is using cryptography to protect the param-
eters of the models and then share the encrypted parame-
ters between the sender and receiver. However, this is not
practical due to the huge numbers of parameters in deep
neural network and the limitations on the time-consuming
and storage space as well. Furthermore, applying cryptog-



raphy directly cannot be employed in tackling the black-
box schemes. Thus, new techniques need to be proposed for
defending against the white-box and black-box adversarial
attacks. Instead of applying cryptography straightforwardly
on the model itself, a better choice is to affect the model
during the training process by adding some factors on the
inputs or outputs. The factors are only accessible to model
users, therefore attackers cannot use the model or surrogate
model without these factors. By introducing little overhead,
the security of secret communications could be ensured. In
the real scenario, the factors could be specific images, num-
bers, texts, efc.

In this paper, we propose a robust GAN-based SWE ap-
proach to defend against white-box and black-box adver-
sarial attacks. In our proposed method, an encoding key is
introduced in the generator, and combined with the secret
message in two modes, i.e., concatenated mode and bitwise
addition mode, then the encoding key and the secret mes-
sage are used to feed the generator and produce stego. Cor-
respondingly, a decoding key is introduced in the extractor
to recover the secret message from the stego. The encoding
key and the decoding key are different, that is, the proposed
SwE is a asymmetric key based steganography. An encoding
key strictly corresponds to a decoding key, and the generator
and extractor are jointly trained, thus even if a bit of encod-
ing or decoding key is incorrect, the secret message cannot
be recovered in a correct manner. As for white-box attacks,
even if the attacker obtains the structure and parameters of
the generator and extractor, he/she cannot recover the secret
message without a decoding key, meanwhile he/she cannot
generate a confused stego without an encoding key. Then for
black-box attacks, even if the attacker obtains a large num-
ber of secret message and stego pairs, he/she cannot train
an available extractor that has the same behavior as original
extractor due to the lacking of a decoding key.

Experimental results demonstrate that our method can
protect the secret communication on the premise of ensuring
the generated images’ quality. By disturbing the introduced
keys in different degrees, we show that our steganography
model can resist both white-box and black-box attacks. All
the experiments were conducted on an public dataset FFHQ.

Our main contribution are summarized as follows:

* To the best of our knowledge, we are the first to introduce
the asymmetric keys for achieving DL-based SWE. Our
proposed model can significantly improve the security of
DL-based steganography, which satisfies the Kerckhoffs’s
principle of cryptography well. We hope this work could
inspire future researchers to develop more robust and se-
cure methods for advancing SwE.

* We designed a steganography model based on GAN by
incorporating DL-based generator and extractor jointly
trained with asymmetric keys. Our model ensures that the
secret information could be recovered only when all the
keys are 100% correct.

* Experimental results are conducted on a public dataset
FFHQ, which demonstrated the effectiveness of our ap-
proach in fighting against the both white-box and black-
box adversarial attacks.

Related Work
Steganography-without-embedding

SwE (Barni 2011) generates stego images driven by se-
cret message or selects carriers mapping to secret mes-
sage, instead of requiring a given carrier. Compared with
embedding-based steganography, SwE, a new type of
steganography with great development potential, is theoreti-
cally secure to resist machine learning (ML)-based stegansl-
ysis relying on embedding (pixel modification) features.
According to different implementation methods, SwEs in-
clude carrier selection based approach and carrier generation
based approach. The main idea of carrier selection based
approach is to establish the relationship between the secret
message and stego image according to the inhere character-
istics of the image. Zheng et al. (2017) used robust hashing
to map the stego images to secret message. By using texture
synthesis, Wu and Wang (2014) generated synthesis images
with complex texture to hide the secret message. Hu et al.
(2018) used DCGAN (Radford, Metz, and Chintala 2015) to
design the first GAN-based SwWE. In this method, the stego
image is generated by the generator according to the noise
vector mapped from a secret message. Zhang et al. (2019b)
also proposed a data-driven SWE scheme. Compared with
the first DL-based SWE (Hu et al. 2018), the steganography
capacity of this method has been improved, but the recov-
ery accuracy has decreased to a certain degree. Zhang et al.
(2020b) proposed SSS-GAN model that uses the category of
image semantic information to generate stego. However, the
SOTA DL-based SWEs have security issues in protecting the
safety of models and parameters, what is we focus on.

Steganography and watermarking with deep
learning

In 2017, Baluja (2017, 2019) proposed a deep steganography
method that placing a full size color image within another
image of the same size. Volkhonskiy, Nazarov, and Burnaev
(2020) proposed a generative approach that produce realis-
tic images that could serve as containers for secure message
embedding. Tang et al. (2017) proposed ASDL-GAN, an au-
tomatic steganographic distortion learning framework with
GAN, which simulates the rivalry between steganography
with additive distortion and deep-learning based steganaly-
sis. Yang et al. (2018) proposed a new secure GAN-based
steganographic framework which outperformed the previ-
ous method ASDL-GAN and can resist current advanced
steganalysis methods. Yang et al. (2019) proposed an en-
hanced GAN-based to learn the embedding cost for image
steganography. In very recently, a new steganography and
watermarking technique based on multi-label targeted eva-
sion attacks, which simultaneously satisfies embedding ef-
fectiveness, elusiveness, confidentiality and robustness, was
propsed by Ghamizi et al. (2021). However, the aforemen-
tioned methods are based on the embedding of natural im-
ages, which could be easily detected by the existing DL-
based steganalysis techniques.

Zhu et al. (2018) developed an end-to-end neural net-
works with noise layer for image steganography and water-
marking, which is robust against different types of noise at-



tacks. Liu et al. (2019) proposed a novel two-stage separable
deep learning framework for practical blind watermarking.
Zhang et al. (2020a) proposed the first deep watermarking
framework for protecting deep learning based image pro-
cessing models. Quan et al. (2020) protected the intellectual
properties of trained DL models by modifying the host mod-
els to degrade its performance on a specific image that has
a statistically significant difference from the training data.
These watermarking methods modify the carriers by lever-
aging the neural network to find the suitable positions.

Our Method
Problem Definition and the Framework

Our proposed secure GAN-based SWE framework includes
the secret message sender Alice, the receiver Bob, the dis-
criminator Dev, and the attacker Eve. Among them, Alice
and Bob are both communicating parties. Dev plays a role
of the discriminator to help Alice and Bob to establish a se-
cure communication channel (making the stego image gen-
erated by Alice more real and natural). Eve is the attacker
who attempts to disturb or even steal the secret message.

A stego image ¢’ is generated by the generator Alice with
the secret message m and an encoding key en_key.

A(m,en_key) = . (1)

The secret massage m/’ is recovered by the extractor Bob
with the stego image ¢’ and a decoding key de_key.

B(d,de_key) =m/'. )

The discriminator Dev inputs the stego image ¢’ generated
by Alice and a real image c from the real image data set, and
determine whether the input image is real or fake according
to its output:

D(e,c) =0/1. 3)

Eve is an attacker who has a lot of background knowledge
under different attack modes. In this paper, we consider two
types of white-box threats and one type of black-box threat
as follows.

* Generator Disclosure in White-box. The attacker Eve
has the network parameters of the generator, including
the network structure published by the algorithm. Eve at-
tempts to transmit message m’”’ to confuse the receiver and
mislead the receiver to make wrong decisions. For exam-
ple, the attacker uses the obtained generator to generate
a misleading image ¢’ with the pre-designed misleading
message m” and then sends it to the receiver for mislead-
ing purpose:

A(m”) = )

» Extractor Disclosure in White-box. The attacker Eve ob-
tains both the stego image ¢’ and the network parameters
of the extractor. Thereby, Eve can recover the secret mes-
sage m’ with the obtained extractor which may cause in-
formation disclosure:

B(d)=m' (%)

where m’ = m if Bob can 100% recover the secret mes-
sage m.

* Surrogate Extractor in Black-box. Supposing that the
attacker Eve possesses a large number of secret message
and stego image pairs (¢, m). Noting that we do not en-
tangle with the approach of attackers obtaining those pairs
in real scenarios. Instead, a extreme case is considered in
the black-box case so that the attacker is able to train the
extraction network B’ based on these. Afterwards, if Eve
obtains a suspected image, the secret message m can be
extracted via the network, which may result in informa-
tion disclosure.

B'(d)=m 6)

Generator

The generator Alice generates a stego image based on the in-
put secret message. Recall the aforementioned first threat in
white-box, it is necessary to design a scheme that even if the
attacker knows the network parameters of the generator and
generates a forged stego image based on the obtained gen-
erator and misleading message, the receiver cannot extract
misleading message from the forged stego image.

Generally, the generation of stego image only needs secret
message and a trained generator. If the input of the network
contains not only the secret messge m, but also an encoding
key en_key, then the parameters of trained generation net-
work will also be determined by the encoding key. A stego
image can be generated when the key is known merely. The
sender generates the stego image ¢’ with Eq. (1). The at-
tacker does not know the correct encoding key, so he/she
chooses a key = (x represents the randomized key), along
with a forged secret message m'/, feeds to the obtained gen-
erator and obtains a misleading image ¢’ by A(m”, x) = ¢”.
Apparently, ¢’ # ¢’ due to an incorrect encoding key. There-
fore, recipient could not extract the misleading secret mes-
sage and the first threat in white-box can be solved.

According to different ways of combining encoding key
and secret message, we design two specific steganography
(generator) structures as shown in Fig. 1.

Concatenated Mode In this mode, the encoding key
en_key is directly concatenated with the secret message m
as the input noise vector n of generator, i.e., n = en_key|m,
to incorporate in the network training. The illustration is
shown in Fig. 1(a). Following the concatenated input n, there
is a fully connected layer and several deconvolution layers,
which learn and generate samples that conform the real im-
age distribution. In training process, the value of secret mes-
sage here is a random number sampled from (—1, 1) which
determines the characteristics of the generated image. And
the dimension of secret message determines the scale of net-
work parameters of generator and the complexity of gener-
ated image. The value of encoding key en_key is also a ran-
dom number sampled from (—1,1). The concatenating op-
eration increases the total dimension of the input vector in a
disguised way. Note that the generated key is fixed, therefore
the noise vector dynamically changes only with the message.

Bitwise Addition Mode In this mode, the encoding key
en_key and secret message m are combined by bitwisely
addition, i.e., n = en_key & m, as the feed of the generator,
which is shown in Fig. 1(b). In this structure, en_key shares
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Figure 1: The steganography (generator) network structure of (a) concatenated mode and (b) bitwise addition mode.

the same dimension with m. If the the dimension of en_key
is different with that of the secret message, a liner operation
is required to expand the dimension of the encoding key or
the secret message. Same as before, m and en_key are ran-
dom values sampled from (—1, 1).

Extractor

The extractor plays the role in extracting the hidden secret
message from stego image with decoding key. To well ad-
dress the the second threat in white-box, we introduced a de-
coding key in the extractor side and jointly trained with the
generator (fed with a corresponding encoding key), thus an
attacker who does not have the correct decoding key cannot
recover the secret message even if he/she has the knowledge
of extractor.

D Convolution
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Figure 2: The structure of secret message extraction net-
work.

Fig. 2 shows the network structure of our designed ex-
tractor. Decoding key de_key is transformed into a matrix
which shares the same size and dimension with input stego
image. Then this matrix bitwise adds with input image, and
the result is the input of extractor for secret message extrac-
tion. Under this circumstance, the introduction of the decod-
ing key affects the parameters of extraction network, so any
change of the key will affect the final extracted message.

We add the part of secret key recovery in the loss function
of extractor as:

Lp = \id (m,m’) + \ad (de_key,m’)

N N
7
. )

7

(m,m')* + X2 > (de_key,m')?,
1 i=1
where NV is the dimension of input noise vector, m is the
secret message hidden in stego image, m’ is the message
extracted by receiver and de_key is the decoding key. \;
and Ao represent the recovery weights of secret message and
decoding key, respectively.

Training Process

The training process of the framework designed in this paper
adopts a combination of end-to-end and training by stage. In
image steganography algorithms, the generation of stego im-
age should be guaranteed first. Therefore, the generator and
the discriminator should be pre-trained so that the genera-
tor can stably generate stego image. Then in mid-training
phase, the extractor participates in training for recovering
secret message from stego images. We dynamically adjust
the weights of networks of Alice, Bob and Dev in different
processes of pre-training, mid-training and end-training.

In detail, in the mid-training process, when the genera-
tor and the discriminator iterate once, the extractor iterates 3
times, which helps normalize the convergence of generator
to match the direction of secret message recovery while en-
suring that the generator continues learning to generate im-
ages. After a certain number of iterations, only the extractor
will be updated, and the generator only needs to generate
stego images as the input of extractor, we call process of this
phase as end-training. The aim of end-training phase is to
further improve the accuracy of secret message recovery.

Experiments

In this section, we evaluate the proposed GAN-based SWE
from the following aspects. Firstly, we evaluate the secu-
rity of the proposed method in defending the white-box and
black-box attacks.

Datasets

FFHQ' (Karras, Laine, and Aila 2019) is a large human fa-
cial data set which consists of 70,000 high-quality PNG
images at 1024x1024 resolution and contains consider-
able variation in terms of age, ethnicity and image back-
ground. It also has good coverage of accessories such as eye-
glasses, sunglasses, hats, efc. In the following experiments,
we choose the thumbnails in 128 x 128 resolution.

Implementation Details

In our experiments, we use Tensorflow for the implemen-
tation and test them on a NVIDIA 2080Ti GPU. We train
the model for 100 epochs with stochastic gradient descent
and the batch size is set to 64. The size of generated images
is 64x64x3. The inputted noise vector is a random value
sampled from (—1,1) and the dimension of the secret mes-
sage are 100, 200 and 300 respectively. The dimensions of

"https://github.com/NVlabs/ffhg-dataset
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encoding key and decoding key are both set to 10 in our ex-
periments. As for the hyperparameters, learning rate is set to
0.0002 and one step is recorded every 1,000 batches.

Quality of Generated Image

Different from the original GAN, the input of our generator
includes not only secret message, but also the encoding key.
Observed images generated by the generator designed in this
paper and the original generator (without keys) are shown in
Fig. 3. We can see that the introduced encoding key does
not affect the quality of the generated samples. Similar to
original GAN’s generator, our generator is able to learn to
generate samples that obey the distribution of real dataset.
Furthermore, we evaluate the generated images with more
rigorous quantitative indicators from the perspective of im-
age quality and sample diversity, and measure the differ-
ence between the distribution of real images and stego im-
ages. FID (Frechet Inception Distance) (Dowson and Lan-
dau 1982) is a metric that is widely used to evaluate the qual-
ity of images. As for GAN, FID can measure the difference
between the distribution of real and generated images.

PID0) = =l P+ (3 + 3 =23 3,

(®)
where r and g are the distribution of real images and gener-
ated images, respectively. By calculating the mean and co-
variance of the two distributions, the similarity of the two
sets of images is measured. The lower the FID score, the
closer the generated images are to the real images. The re-
sults are shown in Table 1, from which we can see that the
quality of generated images is not affected by the encoding
key we introduced in the generator, and the fluctuation of
FID is lower than 1, which demonstrates that the quality of
generated images are almost the same as the original GAN’s.

Style | Original GAN | Concatenated | Bitwise addition

FID | 30.81 30.97 30.09

Table 1: FID scores of different generation structures.

Security Analysis

Recalling three potential threats we discussed above: gener-
ator disclosure (the first threat in white-box), extractor dis-
closure (the second threat in white-box) and train extractor
(the threat of black-box), in this subsection, we conduct ex-
periments to evaluate the security of our method in defend-
ing against these threats.

Generator Disclosure To estimate the impact of encod-
ing key on the generator disclosure threat, we conduct ex-
periments on generator with two modes of using encoding
key and the results are shown in Table 2. The dimension
of secret message is set to 100, 200 and 300. We compare
message recovery accuracy of original GAN, our network
with correct and randomized encoding key (representing the
key randomly guessed by an attacker). As we can observe
from Table 2, the recovery accuracy of our network with
encoding key in concatenated mode is almost the same as
the original GAN without keys. In addition, there is a slight

improvement in the circumstance of secret message in 300
dimension when the given encoding key is correct. But if
the key is wrong or randomized, the message recovery ac-
curacy is only approximately 50%. For 0/1 bits, it is almost
the result of randomization, which exactly demonstrates the
security of our method in defending white-box attack at the
generator’s side. As for generator using encoding key with
bitwise addition mode, the recovery accuracy is lower than
60%, which demonstrates that the security of generator in
bitwise addition mode is slightly weak than that in concate-
nating mode in defending the white-box attack.

Extractor Disclosure For extractor disclosure threat, we
introduce decoding key in the input (as well as considering
the element of the decoding key in the loss function of ex-
tractor). We compare message recovery accuracy of original
GAN, our network with correct decoding key and random-
ized decoding key (representing that used by an attacker).
As shown in Table 3, the hidden message recovery accu-
racy of extractor without a decoding key is 65.3%, 59.7%,
and 59.2%, respectively, and a relative high accuracy (above
94%) is guaranteed when the key is correct. It demonstrates
that the extractor with a decoding key can well address the
known extractor disclosure threat.

Surrogate Extractor To simulate the process of an at-
tacker using collected stego image and secret message pairs
to train the surrogate extractor, we use a trained generator
with encoding key to generate secret message and stego im-
age pairs. We assume that the attacker hold an extraction
network without decoding key in the input (the input only
includes stego image), which is slightly different from our
designed model (shown in Fig. 2). The loss function of at-
tacker is

N
Live = d(m, E()) =Y _(m, E(c))?, 9)
i=1

where m is secret message, ¢’ is stego image, N’ is the di-
mension of input noise vector, and F is the extractor trained
by attacker Eve.

Due to the attacker’s joining, the loss function of original
extractor also need to be adjusted as follows:

LBob = ABLB - )\ELEl)(i) (10)

where Ap and \g are the extractor weights of receiver Bob
and attacker Eve, respectively, which guarantee that Bob’s
extractor converges while maximizing Eve’s.

The experimental results are shown in Fig. 4. In the left
side of dotted line, the extractor of receiver and the sur-
rogate extractor of attacker conduct a confrontation train-
ing process. At this time, the message recovery accuracy is
gradually approaching to 50%. Then in the right side, af-
ter training approximately 20 iterations, the training of re-
ceiver tends to be converged. As we can observe, the sur-
rogate extractor of attacker gradually converges in the fol-
lowing several steps and keeps stable at approximately 0.85,
0.76 and 0.57. Therefore, even if the attacker hold a large
number of stego image and secret message pairs, he/she still
cannot train an effective surrogate extractor to recover secret
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Figure 3: Images generated by generator with different structures: (a) Images generated by original GAN without keys, ()
Images generated by generator with encoding key in concatenated mode, and (c) Images generated by generator with encoding

key in bitwise addition mode.

(a)
. En_key None Correct | Randomized
Dim
100 99.9% | 99.9% 50.1%
200 99.4% | 99.7% 50.2%
300 97.5% | 98.7% 49.9%

(b)
. En_key None Correct | Randomized
Dim
100 99.9% | 99.9% 59.8%
200 99.4% | 99.3% 53.4%
300 97.5% | 97.2% 52.2%

Table 2: Message recovery accuracy of original GAN without key, generator with correct encoding key and generator with
randomized encoding key. (a) The encoding key used in concatenated mode. (b) The encoding key used in bitwise addition

mode.
Di De key None | Correct | Randomized
im
100 99.9% | 99.6% | 65.3%
200 99.4% | 97.6% | 59.7%
300 97.5% | 94.8% | 59.2%

Table 3: Message recovery accuracy of original GAN, ex-
tractor with correct and randomized decoding key.

message. We can also find from the figure that the larger the
dimension of the input, the more secure of the performance
in defending the black-box attack can be achieved.

Even More Background Knowledge?

In the last subsection, we have discussed how our designed
method solves the known threats when the attacker does not
even known anything about encoding and decoding key. But
what if a part of the keys is intercepted or inferred by the
attacker? Thus we conduct further experiments to evaluate
the security of our method by observing the secret message
recovery accuracy with different error bits of given encoding
and decoding key. Both the encoding and decoding key use
a uniform length of 10 bits.

As shown in Fig. 5, for the case of encoding key in con-
catenated mode, when the key is incorrect by only one bit,

100
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— 300
0.84

}
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=3
o
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Figure 4: Message recovery accuracy of extractor training
by attacker.

the extractor cannot extract the secret message successfully
(the accuracy is approximately 50%). As the number of er-
ror bits increases, the randomness is still maintained. In the
bitwise addition mode, when the encoding key is incorrect
by one bit, the extractor maintains a high recovery accuracy
(higher than 90%), and then as the number of error bits in-
creases, the extraction accuracy constantly decline, and is
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Figure 5: Secret message recovery accuracy with different error bits of given encoding or decoding keys: (a) encoding key in
concatenated mode, (b) encoding key in bitwise addition mode, and (c¢) decoding key.

Steganography Methods Steganography Capacity Image Size Recovery Accuracy
Abadi and Andersen (2016) 16 - 99.7%
Li and Zhang (2018) 152/334 300x300/500x 500 100%
Zhang et al. (2019b) 146~1083 64 %64 70%
Zheng et al. (2019) 128128 256x256 -
Ours 300 64 x64 >94%

Table 4: In comparing with other steganography methods based on encryption

finally lower than 60%. Similar with the circumstance of en-
coding key, the recovery accuracy of the extractor drops to
approximately 65% when the decoding key has one bit er-
ror, and it gradually decreases as the number of error bits
increases. The recovery accuracy of secret message in 100
dimension keeps stable at approximately 65%, and the cir-
cumstance of secret message in 200 and 300 dimension keep
stable at approximately 60%. Experimental results demon-
strate that the attacker could not recover secret message ac-
curately either decoding or encoding key was wrong, which
further prove the security of our proposed method.

Steganography Performance Comparsion

In this section, we compare the designed secure SWE scheme
based on GAN with other steganography methods based on
encryption. Two indicators are used to evaluate steganogra-
phy performance: steganography capacity and message re-
covery accuracy.

As shown in Table. 4, the steganography capacity of
our method in a single image can reach 300 bits (300-
dimensional). (Abadi and Andersen 2016) is the first work
that encryption is introduced into the security model of deep
learning. It generates a messy ciphertext instead of an image,
and the steganography capacity is low while the recovery
accuracy is relatively high. (Li and Zhang 2018) is a SWE
method based on fingerprint construction. Due to the intro-
duction of the RS error correction code, the recovery accu-
racy reaches 100%. (Zhang et al. 2019b) is an encryption
embedded-based steganography method which has a great
improvemet in steganography capacity compared with pre-
vious work (Hu et al. 2018). But the recovery accuracy has
dropped severely, only reaching 70%. (Zheng et al. 2019)
embed image in image based on GAN. Due to the large

number of image pixels and huge steganography capacity,
the recovery of information is not at pixel but the 0,1 bit
level which relies more on vision. In comparison, the se-
curity model designed in this paper performs well in terms
of steganography. The steganography capacity could reaches
300 bits while ensuring high information recovery accuracy.

Conclusion

We have proposed a secure SWE based on GAN. Starting
from designing principles of modern cryptography, asym-
metric encoding and decoding keys are introduced. Consid-
ering the security threats of generator disclosure, extractor
disclosure, and the surrogate of extractor, the encoding key
with two specific using modes is added to the generator, and
the decoding key is added to the extractor. We have con-
ducted experiments on a benchmark dataset to evaluate the
performance of our proposed method. The results show that
the introduced keys do not reduce the quality of generated
stego images, and the security of defending white-box and
block-box attacks is greatly enhanced. Even if one bit of the
encoding key or decoding key is incorrect, the recovery ac-
curacy is very close to the result of random guess.
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