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Abstract

The training of Deep Neural Networks (DNN) is costly, thus
DNN can be considered as the intellectual properties (IP) of
the model owners. To date, most of the existing works pro-
tect the copyright of DNN through watermarking. However,
the DNN watermarking is a passive verification method that
can only work after the DNN model is pirated. In this paper,
we propose an active DNN copyright protection method a-
gainst DNN piracy, named ActiveGuard. ActiveGuard aims to
achieve active authorization control and users’ identities man-
agement for DNN, and can provide ownership verification.
Specifically, ActiveGuard exploits the elaborate adversarial
examples as users’ fingerprints to distinguish authorized user-
s from unauthorized users. Legitimate users can enter finger-
prints into DNN for identity authentication and authorized us-
age, while unauthorized users will obtain a poor model per-
formance. In addition, ActiveGuard enables the model owner
to embed a watermark into the weights of DNN for owner-
ship verification. Compared to the few existing active pro-
tection works, ActiveGuard is the first work to achieve both
active authorization control and users’ identities identifica-
tion. Besides, ActiveGuard induces lower overhead than these
existing works. Experimental results on LeNet-5 and Wide
Residual Network (WRN) models demonstrate the effective-
ness and robustness of the proposed method.

1 Introduction
Training a high-performance Deep Neural Networks (DNN)
is costly and time-consuming (Uchida et al. 2017; Rouhani,
Chen, and Koushanfar 2019; Chen and Wu 2018; Xue,
Wang, and Liu 2021). Therefore, the trained DNN model
can be regarded as a valuable intellectual property (IP) of
the model owner. However, malicious users may illegally
copy, redistribute, or abuse the models without permission
(Chen and Wu 2018; Lin et al. 2021; Xue, Wang, and Li-
u 2021; Zhang et al. 2018). The IP protection for DNN is
an emerging problem, which has attracted more and more
serious concerns. Existing copyright protection methods in
the multimedia field cannot be applied to DNN copyright
protection directly (Xue, Wang, and Liu 2021; Chen et al.
2019).
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In recent years, many works have been proposed to pro-
tect the copyright of DNN using DNN watermarks. Howev-
er, the DNN watermarking is a passive verification method
that can only work after the model is pirated, which cannot
prevent piracy in advance. Besides, the DNN watermarking
method is unable to identify/manage different users’ identi-
ties, which cannot meet the requirements of practical com-
mercial applications.

To date, few active authorization control works (Chen
and Wu 2018; Fan, Ng, and Chan 2019; Chakraborty, Mon-
dal, and Srivastava 2020) have been proposed to protect the
copyright of DNN models, in which the authorized users
can obtain a high accuracy when using DNN, while ille-
gal users will obtain a poor accuracy. However, the work
(Chen and Wu 2018) requires an extra anti-piracy transfor-
mation module to verify whether a user is legal or not. To
use the DNN normally, an authorized user requires to pre-
process each input data using the transformation module,
which introduces high computational overhead. The work
(Fan, Ng, and Chan 2019) embeds multiple passport layers
into the DNN, which will introduce high overhead. Besides,
the passport-based method is vulnerable to tampering at-
tack and reverse-engineering attack. The hardware-assisted
method (Chakraborty, Mondal, and Srivastava 2020) relies
on the trusted hardware devices (as a root-of-trust) to store
the key for each user, which is costly for commercial appli-
cations. Further, all these existing active authorization con-
trol methods (Chen and Wu 2018; Fan, Ng, and Chan 2019;
Chakraborty, Mondal, and Srivastava 2020) do not support
users’ fingerprints management, which makes them unsuit-
able for commercial applications.

In this paper, we aim at actively protecting the copy-
right of DNN models and providing users’ identities man-
agement, which can prevent the occurrence of DNN pira-
cy in advance and manage users’ identities. We propose an
active IP protection method for DNN via adversarial exam-
ples based user fingerprinting, named ActiveGuard. The pro-
posed method is able to achieve active authorization con-
trol, users’ fingerprints management, and ownership verifi-
cation. To realize users’ fingerprints management, ActiveG-
uard generates specific adversarial examples as users’ fin-
gerprints, and each authorized user is assigned with an ad-
versarial example as his fingerprint. Then, authorized user
can input his unique adversarial example into the DNN to



verify his identity. In order to achieve authorization control,
ActiveGuard adds a control layer to DNN. The control lay-
er can constrain the usage of the unauthorized users on a
protected DNN model, i.e., make the DNN dysfunctional
to unauthorized users. In order to realize ownership veri-
fication, ActiveGuard embeds a numerical watermark into
DNN’s weights with a parameter regularizer.

The contributions of this paper are four-folds:

• For the first time, we propose an active IP protection
method for DNN via adversarial examples based user fin-
gerprinting. ActiveGuard regards adversarial examples
with specific classes and confidences as users’ finger-
prints, and achieves authorization control based on the
uniqueness of each user’s fingerprint.

• The proposed ActiveGuard supports ownership verifica-
tion for suspicious DNN models. We design an effec-
tive DNN watermarking scheme, where a numerical wa-
termark can be embedded in DNN’s weights discretely
by leveraging a regularizer. This watermarking scheme
can successfully embed a large-capacity watermark in
DNN’s weights without affecting the normal usage of
the DNN model. Compared with the existing watermark-
ing method (Uchida et al. 2017), the proposed watermark
embedding method can provide a larger capacity (0∼9
each bit, rather than 0∼1 each bit) and is more stealthy
(can be embedded discretely).

• Most of the existing works are passive verification
methods, while this work can provide active copyright
protection and copyright management for DNN. Com-
pared with the few existing active authorization control
works (Chen and Wu 2018; Fan, Ng, and Chan 2019;
Chakraborty, Mondal, and Srivastava 2020), ActiveG-
uard is the first work to achieve both authorization con-
trol and users’ identities management. Besides, ActiveG-
uard induces lower overhead than these existing works.

• ActiveGuard is demonstrated to be robust to model fine-
tuning attacks and model pruning attacks.

2 The Proposed Method
2.1 Overall Flow
As shown in Figure 1, the overall flow of the proposed
method can be divided into the following steps: (i) The mod-
el owner embeds the specific numerical watermark into the
DNN model. (ii) The model owner deploys the watermarked
DNN as an online service, and generates the licenses (i.e.,
the adversarial examples) for authorized users to achieve ac-
tive authorization control. (iii) The authorized users submit
fingerprints (adversarial examples) to DNN model to veri-
fy their identities, and then use the DNN normally. On the
contrary, unauthorized users will obtain a low performance
due to the added control layer. (iv) When the model owner
suspects that the DNN has been pirated, he can extract the
embedded watermark from the weights of specific convolu-
tional layer of the suspicious DNN model. If the watermark
can be successfully extracted, the ownership of the suspi-
cious DNN can be verified.
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Figure 1: Overview of the proposed active intellectual prop-
erty protection method for DNN.

The proposed ActiveGuard method has four functions
(authorization control, users’ fingerprints generation, user-
s’ fingerprints management, copyright verification), which
will be described in Section 2.2∼2.5, respectively:

2.2 Authorization Control
The procedure of active authorization control can be divided
into three steps.

1) An adversarial example is assigned to an authorized us-
er as his fingerprint. The proposed ActiveGuard method
generates each adversarial example based on a specific
class t with a fixed confidence c. In this way, each adver-
sarial example is unique, thus can represent the unique
identity of each authorized user.

2) Users submit their fingerprints to DNN for identity au-
thentication before using the DNN model. Specifically,
we design a control layer and add it to the end of the
DNN to restrict the usage of unauthorized users on the
DNN.

3) For authorized users with legal fingerprints, the ActiveG-
uard will reload the DNN model, and the added control
layer will be automatically removed. As a result, the au-
thorized users can use the DNN model normally (without
the control layer). However, for unauthorized users, the
DNN with the control layer will output randomly pre-
dicted results.

The proposed ActiveGuard exploits the difference of con-
fidences to distinguish authorized users from unauthorized
users. In general, for a DNN with high performance, the
clean inputs will be classified as ground-truth labels with
high confidences, while the well-crafted adversarial exam-
ples will be classified as their target classes with high con-
fidences. In other words, very few inputs will be classified
as a class t with a low confidence (below 0.50). Inspired
by the above observation, this paper utilizes the low con-
fidence interval (ranges from 0.10 to 0.50) to achieve ac-
tive authorization control. First, we select some fixed confi-
dences (such as 0.20, 0.30 and 0.40) from the low confidence
interval [0.10, 0.50), and use these selected confidences to
construct a set Cfp, i.e., Cfp = {0.20, 0.30, 0.40}. Second,
we generate such adversarial examples that are classified by



the DNN as the specific target classes, while their classifi-
cation confidences are in the set Cfp. In this way, when a
user submits his fingerprint (i.e., adversarial example) to the
protected DNN, he would be regarded as an authorized user
if his fingerprint is classified as a specific target class with a
confidence in the set Cfp. Otherwise, the user is considered
to be unauthorized.

In addition, to achieve access control, we design a con-
trol layer based on the Lambda Layer (Chollet et al. 2015),
and add the control layer to the end of the DNN. The control
layer involves several control conditions and tensor (multi-
dimensional vector) operations, and the implementation of
the layer is as follows: (i) Receive the predicted class and
the confidence vector propagated by the output layer, and
extract the highest confidence in the confidence vector. (i-
i) Calculate the errors between the highest confidence and
each confidence in the set Cfp. The minimal error among
these calculated results is denoted as Ec. If Ec is less than
the tolerable error, the user is considered to be an authorized
user. Otherwise, the user is considered to be an unauthorized
user. (iii) Output a randomly predicted result to the unautho-
rized user. For authorized users, the model will be reloaded
automatically and the added control layer will be removed
to provide normal performance.

2.3 Users’ Fingerprints Generation
We introduce how to generate users’ fingerprints (i.e., spe-
cific adversarial examples). Formally, the protected DNN
hasK classes and T assignable confidences (i.e., the setCfp

has T elements). In this way, a total of K × T fingerprints
can be assigned to users. The fingerprint of a user is denoted
as f , and all theK×T fingerprints constitute the fingerprint
library FP , i.e., FP = {f1, f2, . . . , fK×T }. The set of K
classes is represented byLfp = {0, 1, 2, . . . ,K−1}, and the
set of T confidences is denoted as Cfp = {c1, c2, . . . , cT }.

In this paper, to ensure that a generated adversarial exam-
ple is unique to represent the fingerprint of each authorized
user, the method to generate the adversarial examples should
satisfy the following goal: the generated adversarial example
should be classified as the target class t with an fixed confi-
dence c when it is input into the model M , where t is a class
randomly selected from the set Lfp and c is a confidence in
Cfp. To this end, this paper generates the adversarial exam-
ples using the C&W method (Carlini and Wagner 2017). The
optimization function of C&W method is as follows (Carlini
and Wagner 2017) :

minimize {||1
2
(tanh(δ)+1)−x||22+α ·g(

1

2
(tanh(δ)+1)}

(1)
where x is the input, δ is a variable to craft the perturbation,
and α is a constant used to control the magnitude of the per-
turbation. The first term || 12 (tanh(δ)+1)−x||22 denotes the
L2 norm that measures the difference between a clean im-
age and the generated adversarial example. The second term
g( 12 (tanh(δ) + 1) is the objective function, where g(·) is
originally defined as follows (Carlini and Wagner 2017):

g0(x
′) = max(max{Z(x′)k : k 6= t} − Z(x′)t, 0) (2)

where x′ is an adversarial example, t is the target class,
and Z is the unnormalized score from the penultimate lay-
er of the DNN (Carlini and Wagner 2017). In this paper,
to generate users’ fingerprints, a confidence control term
||Z(x′)t − c|| is added to the objective function, where c
is a fixed confidence. Therefore, the objective function g(·)
in this paper can be formalized as follows:

g(x′) = g0(x
′) + ||Z(x′)t − c|| (3)

The g0(x′) ensures that the generated adversarial example
x′ is classified as the class t. The confidence control term
||Z(x′)t − c|| guarantees that the confidence on target class
t is close to the predefined value c, where c is a legal confi-
dence in the set Cfp.

The proposed ActiveGuard generates effective adversarial
examples by solving the above Equation (1) with the g(·)
defined in Equation (3).

2.4 Users’ Fingerprints Management
Users’ fingerprints allocation. In ActiveGuard, a unique
fingerprint is assigned to each user based on the class and
the confidence. In other words, the fingerprint of a user will
be uniquely determined by a class t with a confidence c.
The legal combination of class t and confidence c is denot-
ed as Fingerprinting Output (FO), i.e., FO = {(t, c)|t ∈
Lfp, c ∈ Cfp}. Therefore, the users’ fingerprints allocation
can be implemented by assigning users with different FOs,
as follows:

• The FO = (i, cj) is assigned to user (i · T + j), where
i ∈ {0, 1, . . . ,K − 1}, j ∈ {1, 2, . . . , T}.

First, according to all K class labels and T predefined
confidences, a total of K × T legal FOs are obtained. Sec-
ond, the users’ fingerprints are generated based on the above
FOs. Finally, the generated fingerprints are allocated to au-
thorized users, and each authorized user will acquire an fin-
gerprint. For the protected DNN model, the authorized user
with fingerprint fi·T+j will be classified as class i with the
confidence cj .

Users’ fingerprints authentication. Based on the predic-
tion of the model, the proposed method can determine the
legitimacy of each user and determine the identity of each
authorized user. There will be a slight error between the out-
put confidence Pmax(f) and c during the users’ fingerprints
authentication, i.e., Pmax(f) ≈ c, where Pmax(f) repre-
sents the maximal probability in the K-dimensional proba-
bility vector outputted by model f . We denote the tolerable
error of the confidence as ε. If the confidence Pmax(f) out-
put by DNN is within the error range (c − ε, c + ε), the
Pmax(f) would be considered to be matched with c, i.e., the
user passes the identity authentication.

2.5 Copyright Verification
The adversarial example based method is difficult to distin-
guish the model owner from the authorized users. Therefore,
we propose a watermarking method for copyright verifica-
tion. Inspired by the watermark embedding method in work
(Uchida et al. 2017), this paper embeds a n-digits watermark



into the weights of DNN’s convolutional layer for copy-
right verification. Compared to the watermarking method in
(Uchida et al. 2017), our proposed watermark embedding
method has two significant advantages: (i) First, the water-
mark in work (Uchida et al. 2017) consists of binary strings
(0/1), where each bit of a watermark can only be embed-
ded with two different digits (0 or 1). The proposed method
extends the form of watermarking to numerical digits 0-9
through a linear mapping. This allows each bit of a water-
mark can be embedded with 10 different digits (i.e., 0-9),
which greatly improves the capacity of watermark embed-
ding. (ii) Second, the proposed method can embed the wa-
termark discretely, i.e., the watermark can be embedded into
discontinuous weights of a DNN model, while the water-
mark in work (Uchida et al. 2017) is embedded in consecu-
tive positions. As a result, our embedded watermark is more
stealthy (more difficult to be noticed) and more flexible.

The process of the proposed copyright verification
method includes the following two parts: watermark embed-
ding, watermark extraction and verification.

Watermark Embedding First, the proposed ActiveGuard
embeds a n-digits watermark wm = (d1, d2, ..., dn) into
the weights of the target DNN model M . In this paper, the
watermark is embedded into a specific convolutional layer of
DNN. For a DNN, the weight matrix of a convolutional layer
can be denoted as a 4-dimensional tensor D = (F, F, I,O),
where F is the size of the convolution kernel, I is the num-
ber of input channels, and O is the number of output chan-
nels (Uchida et al. 2017; Chen et al. 2019). In this paper,
the watermark is embedded into the maximum component
among all O components of tensor D, where each compo-
nent is a tensor in the form of (F, F, I). In this way, a total of
F × F × I positions are available to embed the watermark,
and the weights at these m (m = F × F × I) positions are
denoted as a vector w. We define another weight vector v to
represent the weights at the n (n < m) randomly selected
positions where the watermark is embedded.

Second, this paper aims to embed n-digits watermark
wm, i.e., the watermark consists of a series of numerical
digits (0-9). Generally, in order not to affect the performance
of the target DNN model, the weights of DNN after embed-
ding the watermark should be close to the original weight-
s. To this end, we design a watermark mapping function
map(·), which can map the weight vector v (small values)
to the watermark vector wm (large digits). In other words,
the designed watermark mapping function linearly amplifies
the weight values (e.g., 0.22, 0.34) so as to map them to wa-
termark digits (0-9). The map(·) is a linear function and can
be formalized as d = ah+ b, where h is a weight value, d is
a digit value of the watermark, a and b are constants.

Finally, in order not to affect the performance of DNN
models, the parameter regularizer (such as L1-norm or L2-
norm) can be applied to embed the watermark (Uchida et al.
2017). In this paper, the proposed ActiveGuard exploits the
mean square error (Allen 1971) to calculate the loss between
the embedded watermark wm and the vector map(v). The
calculated result will be added to the original loss function of
the DNN as a parameter regularizer, which aims to constrain

the influence on performance that caused by the watermark
embedding. In this way, the final loss function L of the target
DNN model can be formalized as follows:

L = L0 + λ
1

n

n∑
k=1

(dk −map(vk))2 (4)

where L0 is the original loss function. The dk ∈ wm is the
k-th digit of the watermark, and vk ∈ v is the weight val-
ue in the position corresponding to the watermark digit dk.

Besides,
1

n

n∑
k=1

(dk −map(vk))2 is the mean square error

(Allen 1971) between map(v) and wm, and λ is a parame-
ter to adjust the term.

Watermark Extraction and Verification The proposed
process of watermark extraction and verification are as fol-
lows. It takes the suspected model M ′, the target convolu-
tional layer l, the watermark wm, the positions p of the
embedded watermark, and the watermark mapping function
map(·) as inputs, and outputs the verified result R.
Step 1. The model owner obtains the parameters of the sus-

pected modelM ′, i.e., the target convolutional layer
l, and the weights Dl of the layer l.

Step 2. The model owner utilizes the positions p of em-
bedded watermark to extract the weights v of tar-
get convolutional layer l at these corresponding po-
sitions.

Step 3. The model owner exploits the function map(·) to
map these extracted weights to the watermark dig-
its, and compares the mapping result wvp with his
watermark wm.

In Step 3, since the values of weights are floating-point
numbers, we round each digit of the wvp to an integer.

3 Experimental Results
3.1 Experimental Setup
In our experiments, we evaluate the proposed ActiveG-
uard on the MNIST (LeCun, Cortes, and Burges 1998) and
CIFAR-10 (Krizhevsky 2009) datasets. We train the LeNet-
5 (Lecun et al. 1998) model on the MNIST (LeCun, Cortes,
and Burges 1998) dataset, and train the Wide Residual Net-
work (WRN) (Zagoruyko and Komodakis 2016) model on
the CIFAR-10 (Krizhevsky 2009) dataset.

Users’ fingerprints settings. For users’ fingerprints allo-
cation or authentication, the number of authorized users that
can be supported is calculated as follows. As mentioned in
Section 2.4, a user’s fingerprint is considered to be legal if
the confidence of this fingerprint is between c− ε and c+ ε.
In this way, the error interval of each authorized user is 2ε.
Given K different classes, the tolerable error ε and the con-
fidence interval [z1, z2), the total number Nau of authorized
users that the ActiveGuard method can support is calculated
as follows:

Nau = K × (z2 − z1)/2ε (5)
In our experiments, K = 10 (10 classes), and the tol-
erable error ε of the confidence is set to be 0.01. There-
fore, if the confidence interval for authorized users is



Dataset Confidence c Class label t
0 1 2 3 4 5 6 7 8 9

MNIST
0.20 99% 99% 99% 99% 96% 100% 99% 99% 100% 100%
0.30 98% 100% 100% 100% 97% 100% 98% 98% 100% 99%
0.40 99% 100% 100% 100% 97% 100% 98% 100% 100% 100%

CIFAR
-10

0.20 100% 100% 100% 100% 100% 100% 100% 99% 100% 100%
0.30 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
0.40 100% 99% 100% 100% 100% 100% 100% 99% 100% 100%

* Each combination of (t, c) represents the identity of an authorized user.

Table 1: Authentication Success Rates of 30 Different Combinations of Class Label t and Confidence c

Dataset Model Epoch Test accuracy Accuracy drop Vowner

MNIST

LeNet-5 without watermarks 50 99.12% N/A N/A
Watermarked LeNet-5 (by training from scratch) 50 99.15% -0.03% success

Watermarked LeNet-5 (by fine-tuning) 20 99.12% 0 success

CIFAR-10

WRN without watermarks 200 91.38% N/A N/A
Watermarked WRN (by training from scratch) 200 91.46% -0.08% success

Watermarked WRN (by fine-tuning) 30 91.38% 0 success

Table 2: Accuracy and Ownership Verification Results on MNIST and CIFAR-10 Datasets

[0.10, 0.50), the proposed ActiveGuard can support up to
200 (10× (0.50− 0.10)/0.02) authorized users. Specifical-
ly, under the above setting, the candidate confidence set is
{0.10, 0.12, 0.14, 0.16, . . . , 0.46, 0.48}, from which we can
choose some confidences to construct the set Cfp. For the
sake of simplicity, in the experiments, we only choose three
confidences (i.e., 0.20, 0.30, 0.40) to construct the set Cfp.
In this way, Cfp = {0.20, 0.30, 0.40}, K = 10, and T = 3.
As a result, ActiveGuard assigns fingerprints for 30 autho-
rized users in the experiments.

Watermarking settings. As discussed in Section 2.5, the
watermark is embedded into a convolutional layer of DNN.
As discussed in Section 2.5, the weight structure of the
weight matrix D is (F, F, I,O), and the maximum water-
mark length is calculated by F×F×I . For example, we can
embed at most 150 (i.e., 5 × 5 × 6) digits into the weight-
s at conv 2 layer (D = (5, 5, 6, 16)) of the LeNet-5 model
(Lecun et al. 1998).

In our experiment, the length of the watermark is set to be
13. The watermark is embedded at the position p in the conv
2 layer, where p is randomly selected from all 150 (LeNet-5)
and 576 (WRN) positions in the conv 2 layer. Additionally,
the range of weight at the conv 2 layer of the LeNet-5 model
is [0.10, 0.45]. Therefore, the watermark mapping function
can be calculated, and the result is d = (180/7)h− (18/7).
Similarly, for the WRN model (Zagoruyko and Komodakis
2016), the range of weight at the conv 2 layer is [0.20, 1.10],
thus the watermark mapping function is d = 10h − 2. We
follow the settings in work (Uchida et al. 2017) to set the
constant λ to be 0.01.

3.2 Authorization Control Performance
Figure 2 shows the test accuracy for authorized usage and
unauthorized usage on the two datasets. It is shown that,
the test accuracy for authorized users on the two datasets
is 99.15% (MNIST (LeCun, Cortes, and Burges 1998)) and
91.46% (CIFAR-10 (Krizhevsky 2009)), respectively. How-

ever, the performance of the unauthorized usage is much
lower, as the test accuracy is only 8.92% (MNIST dataset)
and 10% (CIFAR-10 dataset), respectively. Therefore, the
proposed ActiveGuard method can achieve active authoriza-
tion control, and can effectively prevent DNN models from
being illegally used. The reason why the test accuracy for
unauthorized users is close to 10% is as follows. The con-
trol layer of the DNN outputs a randomly chosen class to
the unauthorized users. Hence, the test accuracy for the u-
nauthorized users is equivalent to the accuracy of randomly
guessing a class from all K classes (K = 10).
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Figure 2: Test accuracy for authorized usage and unautho-
rized usage on the MNIST and CIFAR-10 datasets.

3.3 Users’ Fingerprints Management
Performance

As discussed in Section 3.1, in the experiments, there are 10
different classes (Lfp = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) and 3 d-
ifferent confidences (Cfp = {0.20, 0.30, 0.40}). In this way,
there are a total of 30 (10 × 3) FOs. Each FO is a combina-
tion of class label t and confidence c, and each FO corre-



sponds to an authorized user. Note that, in our experiments,
to evaluate the effectiveness of the proposed ActiveGuard
method, we generate 100 different fingerprints for each au-
thorized user to calculate the authentication success rate of
an authorized user. However, when deploys the DNNs in real
world, the model owner only requires to generate one adver-
sarial example for each authorized user, and each user per-
forms identity authentication by submitting one fingerprint.

Table 1 reports the fingerprint authentication success rate
of 30 authorized users. For MNIST dataset (LeCun, Cortes,
and Burges 1998), the fingerprint authentication success
rate of 30 users is 96% at the lowest, 100% at the high-
est. For CIFAR-10 dataset (Krizhevsky 2009), the minimum
and maximum fingerprint authentication success rates of 30
users is 99% and 100%, respectively, and 27 users achieve
the success rates of 100%. It is shown that, all authorized
users can successfully pass the authentication with a high
success rate.

3.4 Copyright Verification Performance
In the experiment, we embed a 13-digits watermark wm1 =
[1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 1, 0] to protect the copyright of
DNN model. For watermarks with other lengths, the pro-
posed watermark embedding method is also feasible. We
embed the watermark with two different approaches: 1) em-
bedding the watermark by training from scratch; 2) embed-
ding the watermark by fine-tuning. This paper defines a met-
ric named Vowner to evaluate the performance of ownership
verification. If the watermark is successfully extracted from
the target layer of DNN model, Vowner = success, other-
wise, Vowner = failure. The results of ownership verifica-
tion are shown in Table 2. It is shown that, the watermark
can be successfully extracted to verify the ownership of the
model, regardless of the two embedding approaches (train-
ing from scratch or fine-tuning). Meanwhile, the normal per-
formance of the watermarked DNN is similar to the perfor-
mance of the DNN without watermarks. This indicates that,
the proposed ActiveGuard method will not affect the normal
performance of the DNN after embedding the watermark.

3.5 Robustness of the Proposed Method
We evaluate the robustness of the proposed method against
fine-tuning (Simonyan and Zisserman 2015; Pittaras et al.
2017) attack and model pruning (Han et al. 2015) attack.

Table 3 shows the test accuracy and ownership verifica-
tion of watermarked DNN under the fine-tuning attack. Af-
ter 30 and 50 epochs of fine-tuning, the test accuracy of the
LeNet-5 model is 99.53% and 99.53% respectively, while
the test accuracy of the WRN model is 91.47% and 91.53%
respectively. The test accuracy of the watermarked DNN be-
fore and after different epochs of fine-tuning attack is con-
sistent. In other words, the proposed ActiveGuard method is
robust against the fine-tuning attack.

For the model pruning attack, in our experiments, we
assume that the adversary has known the layer where the
watermark is embedded, which is a strong attack assump-
tion. We adopt the pruning method in work (Han et al.
2015) to prune the target layer (i.e., the layer where the wa-
termark is embedded) of the watermarked DNNs (LeNet-

5 and WRN). For the target layer, the r% weights with
the smallest absolute values are pruned, where r% is the
pruning rate. The pruned weights are set to be 0. The wa-
termark embedded into the LeNet-5 and WRN models is
wm1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 1, 0].

The robustness of the watermarked DNN against the prun-
ing attack is shown in Table 4. First, as the pruning rate
increases, the test accuracy of LeNet-5 and WRN models
decreases sightly. However, even 60% of the weights in wa-
termarked DNN are pruned, the test accuracy of two models
still maintains at 98.54% (LeNet-5) and 89.87% (WRN), re-
spectively. Besides, the embedded watermark performs well
in terms of ownership verification. Specifically, even 90%
weights are pruned, the watermark embedded into the WRN
model can still be successfully extracted. However, the own-
ership verification fails when 50% weights in LeNet-5 mod-
el are pruned. The reason is that, the LeNet-5 (Lecun et al.
1998) model is smaller with fewer parameters. Therefore,
when pruning, the smaller values in the watermark are more
likely to be pruned. We also evaluate the robustness of the
watermarked LeNet-5 mdoel against the pruning attack with
a watermark with larger values. Specifically, the watermark
wm2 = [3, 8, 7, 6, 8, 7, 6, 9, 9, 4, 8, 6, 5] is embedded into
the LeNet-5 model for evaluation. As shown in Table 4, for
LeNet-5 model embedded with wm2, even 90% weights are
pruned, the watermark wm2 embedded in the model can
still be successfully extracted. The reason is that, in model
pruning attack, the weights with small values are set to be 0,
therefore, a watermark with large values will not be pruned.
In fact, when 90% weights are pruned, only the weights cor-
responding/map to watermark digits 0, 1, 2 are pruned, while
the embedded watermark wm2 is not affected. Therefore,
even for a small DNN model, embedding a watermark that
does not contain small values (e.g., 0, 1, 2) can still effective-
ly resist pruning attack. Overall, the proposed ActiveGuard
method is effective and robust against the pruning attack.

Model Attack Epoch Test
accuracy Vowner

LeNet-5

None 50 99.15% success
Fine-tuning attack 30 99.53% success
Fine-tuning attack 50 99.53% success

WRN

None 200 91.46% success
Fine-tuning attack 30 91.47% success
Fine-tuning attack 50 91.53% success

Table 3: Test Accuracy and Ownership Verification of Wa-
termarked DNN under Fine-Tuning Attack

4 Conclusion
This paper proposes an active DNN IP protection technique
via adversarial example based user fingerprinting. It protects
the IP of DNN in three aspects: active authorization control,
users’ fingerprints management and copyright verification.
Most of the existing works are passive verification method-
s, while this work can provide active copyright protection
and copyright management for DNN. Compared to existing
few active DNN IP protection works, the proposed method



Pruning
rate

LeNet-5 (embedded with wm1) LeNet-5 (embedded with wm2) WRN (embedded with wm1)
Test accuracy Vowner Test accuracy Vowner Test accuracy Vowner

0% 99.15% success 99.16% success 91.46% success
10% 99.15% success 99.15% success 91.40% success
20% 99.15% success 99.09% success 91.30% success
30% 99.07% success 99.08% success 90.99% success
40% 98.97% success 99.06% success 91.06% success
50% 98.89% failure 99.00% success 90.28% success
60% 98.54% failure 98.93% success 89.87% success
70% 95.80% failure 98.75% success 88.03% success
80% 91.02% failure 97.46% success 80.40% success
90% 68.38% failure 85.36% success 48.35% success
* wm1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 1, 0], wm2 = [3, 8, 7, 6, 8, 7, 6, 9, 9, 4, 8, 6, 5]

Table 4: Test Accuracy and Ownership Verification of Watermarked DNN under Pruning Attack

can achieve users’ fingerprints management and ownership
verification, while introduces lower overhead.
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