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Abstract

Small unmanned aircraft systems (sUAS) are becoming
prominent components of many humanitarian assistance and
disaster response (HADR) operations. Pairing sUAS with on-
board artificial intelligence (AI) substantially extends their
utility in covering larger areas with fewer support person-
nel. A variety of missions, such as search and rescue, as-
sessing structural damage, and monitoring forest fires, floods,
and chemical spills, can be supported simply by deploying
the appropriate AI models. However, adoption by resource-
constrained groups, such as local municipalities, regulatory
agencies, researchers, and indigenous persons, has been ham-
pered by the lack of a cost-effective, readily-accessible base-
line platform that can be easily adapted to their unique mis-
sions. To fill this gap, we have developed the fully free and
open-source ADAPT multi-mission payload for deploying
real-time AI and computer vision onboard a sUAS during lo-
cal and beyond-line-of-site missions. We have emphasized a
modular design with low-cost, readily-available components,
open-source software, and thorough documentation (https:
//kitware.github.io/adapt/). The system integrates an inertial
navigation system, high-resolution color camera, computer,
and wireless downlink to process imagery and broadcast geo-
registered analytics back to a ground station. Our goal is to
make it easy for the HADR community to build their own
copies of the ADAPT payload and leverage the thousands of
hours of non-recurring engineering we have devoted to devel-
oping and testing this general-purpose capability. In this pa-
per, we detail the development and testing of the ADAPT pay-
load. We also demonstrate the example mission of real-time,
in-flight ice segmentation to monitor river ice state and pro-
vide more-timely predictions of catastrophic flooding events.
We deploy a novel active learning workflow to annotate river
ice imagery, train a real-time deep neural network for ice seg-
mentation, and demonstrate operation during field testing.

Introduction
Over the last decade, economies of scale and changing reg-
ulations have substantially reduced the barrier to entry into
utilizing drones for a wide variety of operations. This de-
mocratization of aerial capabilities, previously reserved for
large aircraft and large organizations, is leading to novel
opportunities for humanitarian assistance and disaster re-
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sponse. At the same time, advances in deep neural net-
work (DNN) architectures have allowed artificial intelli-
gence (AI) processing to run faster on less-capable hard-
ware, such as readily-available, lightweight, and low-power
edge computers. It is now possible to deploy DNN-based
computer vision in real time on small unmanned aircraft sys-
tems (sUAS) (Zhu et al. 2018; Kumaar et al. 2020; Castel-
lano et al. 2020a,b). Such AI-enhanced systems could auto-
matically scan large or hazardous areas and provide essential
situational awareness (Shihavuddin et al. 2019; Küchhold
et al. 2018; Singh, Patil, and Omkar 2018; Jung et al. 2018).
In-flight processing capabilities are essential for beyond-
line-of-sight operations, where intermittent, low-bandwidth
wireless connections preclude streaming of high-resolution
raw imagery back to a base station. Instead, compact sum-
mary analytics, such as semantic segmentations (Tzelepi and
Tefas 2021; Lyu et al. 2020) or detected objects (Küchhold
et al. 2018) georegistered on a map, can be streamed to a
base station and then beyond to decision makers. These sys-
tems are already demonstrating utility in search and res-
cue operations (Castellano et al. 2020b), including from
open water (Lygouras et al. 2019), flooded areas (Albanese,
Sciancalepore, and Costa-Perez 2021), avalanches (Bejiga
et al. 2017), and dense forest (Yong and Yeong 2018). Ad-
ditional applications include monitoring forest fires (Zhao
et al. 2018; Kinaneva et al. 2019; Jiao et al. 2019), live
mapping of floods in support of emergency services (Gebre-
hiwot et al. 2019; Munawar et al. 2021a,b; Hashemi-Beni
and Gebrehiwot 2021), assessing structural damage (Kang
and Cha 2018; Wu et al. 2018; Bhowmick, Nagarajaiah, and
Veeraraghavan 2020), monitoring chemical spills (Jiao, Jia,
and Cai 2019; Ghorbani and Behzadan 2020; De Kerf et al.
2020), and monitoring reef (Ridge et al. 2020) and coastal
sand dune (Choi et al. 2017) erosion. In all of these applica-
tions, low-latency dissemination of results and accurate ge-
olocation is essential to be useful for decision makers.

The explosion in readily accessible capabilities of both
drones and DNN computer vision has been largely sup-
ported by open-source software projects providing tools
with free-use licenses. This includes drone components,
such as flight controllers (ArduPilot and PX4), commu-
nication protocols (MAVLINK), and post-processing tools
(OpenDroneMap), as well as open-source projects for gen-
eral computer vision (OpenCV), machine learning (scikit-



Figure 1: (Top) Rendering of the ADAPT payload assem-
bly CAD model that is publicly available at https://kitware.
github.io/adapt/. (Bottom) Payload deployed on a sUAS.

learn), deep learning (Pytorch, TensorFlow, Caffe), and data
annotation (VIAME, CVAT, LabelMe). These have allowed
smaller organizations to build creative solutions on top
of these foundational components. Similarly, an important
trend within the computer vision research community, which
has helped to accelerate progress, is to accompany publica-
tions with open-source implementations of their algorithms
(e.g., on Github). With this, one has access to all of the
tools — and equally important, sufficient and approachable
documentation — to build state-of-the-art AI processing
pipelines to support humanitarian assistance and disaster re-
sponse missions. However, there is a lack of commensurate
open-source projects, tools, and documentation to support
deployment of this processing live, onboard a sUAS with
all of the management of imaging and navigation sensors
required to produced real-time, georegistered results. This
leaves independent groups to redundantly develop mechan-
ical and electrical payload designs and write low-level soft-
ware for sensor control and data management before they
can start to focus on the unique aspects of their missions.

The Autonomous Data Acquisition and Processing
Technologies (ADAPT) Multi-Mission Payload Project1,
which we detail in this paper, was created to provide a foun-

1Project website: https://kitware.github.io/adapt/.

dation of systems integration, open-source software, and
thorough documentation for organizations to deploy readily-
available AI capabilities onboard a sUAS in a way that al-
lows rapid dissemination of results. As its name implies,
payload capabilities can be adapted to specific missions sim-
ply by swapping in different DNN models and sensors. For
missions without an existing corpus of data and trained mod-
els, the ADAPT payload and associated infrastructure can
support optimized data collection and annotation to train the
requisite models. Then, the same system can be used for
aerial, real-time deployment of those models.

We make this open-source system (both hardware and
software) free to the community so that stakeholders may
build upon the designs as they identify minor adaptations
needed to support a richer set of mission requirements. Our
hope is that the community will share these findings and
adaptations with one another via contributions to the open-
source ADAPT project, thereby reducing the overall burden
of non-recurring payload engineering.

While the ADAPT payload is intended as a general-
purpose tool, we focus this paper on the specific mission of
monitoring the evolution of frozen rivers in Alaska to better
understand and predict catastrophic flooding events. When
the Alaskan winter snow melt is rapid and river ice is mostly
intact, immense pressure builds on the river ice, leading to
a dramatic mechanical breakup (Beltaos 2003). Mechanical
breakup occurred along important waterways in Alaska dur-
ing the spring of 2013, including one event along the Yukon
River that led to the devastating impacts at Galena, Alaska
(Hopkins 2013; Taylor, Hum, and Kontar 2016). High water
and ice hit many villages along the river (Eagle, Circle, and
Ft. Yukon), but Galena suffered the most. Colossal damage
left a heavy economic toll with 169 houses destroyed and an
estimated $6 million needed to rebuild the public infrastruc-
ture (Hopkins 2013).

Historically, breakup-flood forecasting relies on manned
reconnaissance flights to issue timely flood watches and
warnings, such as the National Weather Service’s River
Watch Program. These flights provide observations to track
river ice conditions (strength, extent, and movement) over
large regions (tens to hundreds of miles) and identify ice
jams. The vast extent of Alaska, with limited ground ob-
servations, makes it difficult to provide timely and accu-
rate forecasts. This leads to an over-reliance on lower-
resolution, satellite-derived products subject to extended oc-
clusion from clouds. Alternatively, low-cost sUAS deploy-
ments of the ADAPT payload could allow organizations and
indigenous communities to monitor river conditions, lever-
aging real-time, in-flight processing to rapidly disseminate
results over low-bandwidth wireless links.

The main contributions of this work are:

• A free and open-source sUAS payload for deploying real-
time, in-flight AI, enabling various missions supporting
humanitarian assistance and disaster response

• A framework achieving accurate temporal synchroniza-
tion of imagery and GPS/INS streams for exploitation of
visio-inertial odometry and environment mapping

• A publicly available trained model for river ice segmen-



tation for use in further research and development
• A novel active learning annotation workflow
• A demonstration of payload utility in collecting quality

imagery, validated in flight

Open-Source sUAS Payload
Most demonstrated sUAS payloads are commercial prod-
ucts tightly integrated into the drone itself with limited end-
user customization options or are one-off research systems
to support a highly specific mission. This leads to many dif-
ferent groups spending large amounts of time and money on
development and integration. Our goal in starting the open-
source ADAPT project is to provide a basis of integrated
camera and inertial navigation sensors required for any or-
ganization to get started in AI-enhanced sUAS missions. We
provide a baseline implementation of the system with low-
cost, readily-available components for collecting RGB im-
agery, but the overall design allows for great flexibility in
reconfiguration, such as exploiting other camera modalities
(e.g., infrared, multispectral) and different wireless radios.

Figure 1 shows the major components of the payload: the
camera, inertial navigation system (INS), NVIDIA Xavier
computer, and WiFi antenna. The full set of components
is detailed in Table 1. The system shown can be sourced
and assembled for less than $7,700 (USD) by technicians
without expert knowledge of complex systems integration.
The frame of the payload is cut from carbon-fiber sheets,
and components are affixed to this frame with 3-D printed
parts. The camera mount is 3-D printed from Nylon+CF fil-
ament for strength and rigidity, as the INS is also screwed
into this mount. The camera can be manually rotated be-
fore the flight to operate anywhere from nadir to forward-
looking, and this modular design easily supports different
cameras via modifications to the 3-D printed mount. PLA
filament was used to 3-D print holders for the Xavier and
WiFi antenna, while TPU was used for the Lens Hood. Fully
assembled the payload weighs approximately 2.6 kg and
draws approximately 68 W of power while in operation.
All CAD models for these components are made publicly
available (https://kitware.github.io/adapt/), allowing them to
be affordably manufactured in-house or from various online
rapid-prototyping services.

Whenever possible, industry standards (e.g., Genicam)
were used in the electrical and software configuration. We
chose GigE-interface cameras over USB3 cameras, as USB3
is known to cause substantial electromagnetic interference
with the GPS signal. The Xavier edge computer runs Ubuntu
18.04. The software stack utilizes the Robot Operating Sys-
tem (ROS) for flexibility in adding processing nodes, sup-
porting inter-system communications (e.g., between payload
and base-station computers), and integrating additional sen-
sors, as many hardware components that one might put on a
robot already have ROS drivers (Quigley et al. 2009).

Time Synchronization, Calibration, and
Georegistration
A critical requirement across most envisioned missions is
placing AI analytics derived from individual images (e.g.,

segmentation maps or detected object bounding boxes)
within a geospatial context. The INS reports its pose (lo-
cation and orientation) with respect to the world as a func-
tion of time (∼100 Hz). The camera and INS are rigidly
mounted together, so camera pose associated with each im-
age can be inferred by interpolating INS pose onto each
image exposure time and rotating it into the camera frame
with a pre-calibrated INS-to-camera transformation. With
an accurately calibrated camera model (Hartley and Zisser-
man 2003; Schönberger and Frahm 2016), raw image ana-
lytics (specified in image coordinates) can be transformed
into georegistered results. This process is called direct geo-
referencing. However, for this process to be effective, we
need accurate temporal synchronization between the navi-
gation data stream and image timestamps. For example, a
sUAS turning at 10°/s and viewing an area of ground 200
meters away will yield ∼35-m georegistration error for a
one-second time-sync error (erroneously associating the im-
age with INS pose from 1 seconds in the past or future). This
is particularly problematic when producing land cover seg-
mentation maps covering an extended area because image-
to-image georegistration errors lead to discontinuities and
inconsistencies where image fields of view overlap.

Achieving accurate time synchronization across sensors
for this purpose is notoriously difficult, often demanding
substantial integration efforts including custom microcon-
trollers (Tschopp et al. 2019; Leutenegger et al. 2015).
Alternatively, our approach to time synchronization ex-
ploits recently-available machine vision cameras (e.g., FLIR
Blackfly) that support the IEEE 1588 Precision Time Pro-
tocol (PTP), which can achieve sub-microsecond synchro-
nization. The Xavier edge computer acts as a PTP master,
receiving one pulse per second (1PPS) from the INS, with
the 1PPS derived from GPS time with sub 0.1 µs accuracy.
The internal clock on the camera is synchronized via PTP to
the Xavier’s clock. Therefore, the camera, INS, and Xavier
clocks are all accurately tied to GPS time, which would
even provide time synchronization between physically sepa-
rate ADAPT payloads concurrently flying. To validate time
synchronization, we pointed the camera at an HDMI moni-
tor connected to the Xavier displaying its system time, and
the time visible in the image was highly consistent with the
image’s time stamp within the expected uncertainty due to
monitor latency. Additionally, we triggered the camera using
the 1PPS directly and found image timestamps to be consis-
tent with whole-number seconds.

To further validate time synchronization, assess over-
all accuracy of INS outputs, and to calibrate the cam-
era’s intrinsic parameters (Hartley and Zisserman 2003), we
used the open-source structure from motion (SfM) software
Colmap (Schönberger and Frahm 2016) to process images
from a calibration flight. An optimal calibration flight in-
cludes figure eights spanning multiple altitudes over a fixed
area of ground. Colmap analyzes correspondences between
images collected during the flight and automatically recov-
ers camera intrinsic parameters and the pose associated with
each image. The SfM-computed poses are generally highly
accurate since they are derived from high-resolution im-
agery. However, monocular SfM solutions are only defined



Component Description Price (USD)
Advanced Navigation Spatial Intertial navigation system $3,230
FLIR Blackfly BFS-PGE-161S7C-C Global shutter color camera $1,600
Edmund Optics 86-569 Lens $995
NVIDIA Jetson Xavier AGX Embedded computer with GPU $750
Frame Carbon fiber cutouts $500
Ubiquiti Bullet AC Dual-band radio $182
Samsung MZ-V7E1T0BW M.2 NVMe SSD (1TB) storage $150
Ubiquiti LiteBeam Bridge Ground station wireless bridge $80
Misc Hardware (fasteners, cables, etc.) $75
Edmund Optics 88-065 Cable (Hirose) for camera $67
StarTech ST1000SPEX2 PCIe network card $27
TrendNET TEW-AO57 Antenna n-type dual $15
PoE Texas PoE injector Power for antenna $8
Payload Total $7,679

Table 1: Components required to complete payload build. We also integrated a cheaper, rolling-shutter camera, the $720 Black-
fly BFS-PGE-200S6C-C with $550 Computar V0826-MPZ lens.

up to an arbitrary similarity transform. Since the camera and
INS are nearly co-located, we solve for the similarity trans-
form that best maps the SfM camera positions into the as-
sociated INS-reported positions within a local tangent plane
coordinate system2. We treat the resulting SfM-derived cam-
era orientations as ground truth. We solve for the optimal
fixed INS-to-camera rotation, which when applied to INS-
reported orientations best recovers the associated truth cam-
era orientations. This calibration is used in future flights for
direct georegistration of image analytics. All code associ-
ated with this calibration routine has been made publicly
available. We can also interrogate our time-sync accuracy
by testing whether an artificial time offset produces better
agreement, and we found an offset sufficiently near zero,
when considering the temporal precision of the technique.

For testing the ADAPT payload for a HADR-relevant
mission, we investigate the task of river ice monitoring. To
our knowledge, the closest representative open dataset in this
domain is the river ice dataset from the University of Alberta
(Singh et al. 2019). Other works have compiled similar but
unreleased datasets for their work (Zhang et al. 2020). The
Alberta river ice dataset is an important addition to the pub-
lic space but is very limited in scope, lacking diversity in
scale, sufficient examples of river–bank boundaries, and in-
stances of ice buildup–breakup surrounding melt events. To
overcome these limitations, we have curated the ANONY-
MOUS River Ice Dataset (KUAF) as shown in 2. KUAF
consists of over 1000 high-resolution (4000 x 6000 px) RGB
color images taken from an aerial drone platform that flew
multiple days of the same route over a segment of the Yukon
River near Circle, Alaska. The unmanned system was flown
at 558 feet above ground level (AGL). The data contains
many examples of ice buildup along the river, loose ice,
ice–snow and ice–land interfaces, and complex topologies

2We define an east, north, up coordinate system centered at the
median latitude and longitude over the flight and transform INS
pose and, using a best-fit similarity transform, the SfM poses into
this Cartesian coordinate system.

of ice, water, and land within a local area. Additionally, the
dataset contains imagery of the same segment of river taken
over multiple days of ice accumulation and dissipation. This
data can be used in change analysis algorithms. The KUAF
River Ice Dataset is under active development and will be
released in full to the community at a future time through
the ADAPT Github site (https://kitware.github.io/adapt/).

Deep Neural Network Model
For the ice segmentation task we base our solution on the
recent real-time segmentation work of BiSeNetV2 (Yu et al.
2020), ideal for the low-SWaP requirements of the ADAPT
payload. This work utilizes a novel and compute-efficient
dual-stream approach to semantic segmentation. Their net-
work breaks the task into two paths. One is a detail branch,
which is channel-rich and responsible for learning dense
representations of the low level information. The other is
a semantic branch which has shallow layers but quick spa-
tial pooling to aggregate information and context across a
wide ROI over the original image. While this is quite ap-
plicable to our sUAS payload, it has also been utilized in
various other problems, such as general robotic applications
(Tzelepi and Tefas 2021) and pose measurement (Du et al.
2021), and has inspired similar model architectures for the
tasks of road segmentation (Bai, Lyu, and Huang 2021) and
medical image segmentation (Zamzmi, Sachdev, and Antani
2021). Initial testing of this model shows a favorable per-
formance profile when deployed against two state-of-the-
art edge devices, the NVIDIA Jetson Nano and Xavier, as
shown in Table 2. For the Nano, we tested at two power
levels. For both devices, we tested at varying clock speeds
with and without TensorRT, a deep learning inference op-
timization library. Each of these devices were then tested
for steady-state frames-per-second at varying input image
sizes. As can be seen across all examples, the frame rate
decreases rapidly as the input size doubles. Even with the
largest image size we tested, however, the Xavier operating
at the max clock speed with TensorRT can still operate at



Figure 2: Example imagery collected in the KUAF dataset.
The dataset is comprised of over 1000 high resolution im-
ages taken from an sUAS deployed over the Yukon River
near Circle, Alaska.

almost 2 frames per second, a suitable frame rate given the
altitude and field of view of many survey missions. Detailed
profiling results at more granular resolution step sizes, taken
across all settings of power and TensorRT optimizations, are
provided within the Github repository for this project.

Active Learning Annotation Workflow
Our initial investigations started with a completely manual
annotation process, drawing polygons to delineate regions.
However, due to the intricate and jagged regions typical of
snow and ice, accurately annotating boundaries in this man-
ner was very time consuming. We explored available anno-
tation assistance algorithms, such as GrabCut, CVAT Intelli-
gent Scissors, and iterative training guided by extreme-point
selection (Sofiiuk, Petrov, and Konushin 2021). While these
algorithms can be efficient for segmentation annotation in
more common domains, we found them to be inefficient on
our data due to their extensively segmented and complex
morphology. Zhang et. al observed similar challenges and
chose to use Photoshop for dense annotation (Zhang et al.
2020).

Given that ice and snow are relatively distinct from most
backgrounds, both in terms of color and texture, we pos-
tulated that even with limited training data, a segmentation
model should generalize well when applied to visually sim-
ilar examples. This inspired us to develop and deploy a pro-
gressive label correction (active learning) workflow. We start
by very coarsely and sparsely manually ”painting” region
labels using the open-source image editor GIMP. We paint
the labels in a separate layer with the class specified by the
choice of color. We do not attempt to extend these anno-
tations fully to the complex region boundaries. Figure 3B
shows an example of this sparse annotation with frozen wa-
ter (both snow and ice) marked in purple, regions that are
not frozen water marked in green, and unannotated regions
shown in black. We build up sparse annotations in this man-
ner for 5 images and then train the segmentation model
(unannotated regions do not contribute to training loss). We
then deploy that model back on the sparsely annotated im-
ages as well as completely new images. In this way, we use
the model to make suggestions for the full dense ground
truth for these images (Figure 3C). We do not expect or need
this model output to be perfect, we simply need it to be cor-
rect over a sufficient fraction of the images such that a person

Input Size 7.5W Nano 10W Nano Xavier w/TRT
256x256 11.64 12.12 111.8
512x512 4.58 4.74 36.68

1024x1024 0.83 0.88 10.14
2048x2048 0.14 0.19 1.99

Table 2: Frame rates (Hz) at which the payload runs our ice
segmentation model for different input sizes and devices.

checking and correcting mistakes is quicker than annotating
from scratch.

Our tools allow us to quickly inspect the quality of
the model-suggested annotations for each image, and we
sort these results into 1) ground-truth-ready, 2) minor-
corrections-needed, and 3) hard-negative. We were able
to accept ground-truth-ready images as dense ground truth
56% of the time. We found 19% of examples required only
minor corrections, and these are loaded back into GIMP to
quickly clean up the residual labeling errors. Identified hard
negatives are chosen for sparse annotation, if not already
done so, or complete manual dense annotation.

As we iterated through this annotation process and trained
updated versions of the model with more validated ground
truth, the model generalized better on the yet-unannotated
examples, we spent less time correction residual errors, and
ground-truth generation became more efficient. With this an-
notation workflow, the annotator efficiently focuses effort on
regions and examples where the current model is ineffective
and does not waste effort on examples where the model is
already very accurate.

Sparse annotations took 2.02 minutes per image on aver-
age plus 1.03 minutes to clean up the model’s interpolated
labels. Additionally, half of the final ground-truth image an-
notations were drawn directly, after quick visual validation,
from the segmentation model’s output without any manual
annotation or correction whatsoever. This is in contrast to
and a considerable savings from the average of 8.52 min-
utes per image required to achieve similar-quality results by
densely annotating from scratch. After all ground truth was
assembled, the model was re-trained from scratch.

We trained the BiSeNetV2 model on our ice segmentation
dataset for 100 epochs on random patches of 500×500 pix-
els, cropped out of a 2x downsampled version of the original
8000×6000 pixel imagery. Random flips, rotations, and in-
put normalization were used as augmentation. We used the
ADAM optimizer with learning rate 0.02, warm up for 500
iterations, and a step of 1e-1 after epochs 40 and 70. The
batch size used was 18. For this effort, we used only a bi-
nary ice/no-ice class training. The results of this training are
shown in Figure 4.

Payload Flight Validation
Test flights were conducted in Fairbanks, Alaska in Septem-
ber 2021 to validate system capabilities. Since these were
warm-weather flights without snow or ice, we deployed a
proxy tree-segmentation model trained using data synthet-
ically generated using Microsoft AirSim. This model has
an identical network architecture and number of parameters



Figure 3: (A) Example raw image from KUAF River Ice Dataset. (B) Sparse annotation associated with the image. Region
interiors are ”painted” with the appropriate labels without addressing the complex boundaries. Blue corresponds to frozen
water (both snow and ice) and green corresponds to the background (land and liquid water). Black indicates space where no
label was given. (C) After some initial training solely on sparsely annotated examples, the model can successfully interpolate
the remainder of the labels (black regions disappear), which after visual validation, was accepted as ground truth. (D) The
region boundaries from C shown as red contours on top of original image. Figure is best viewed in color.

Figure 4: Results of a model trained on binary ice/no-ice
ground truth data. (Left) Raw image from KUAF River
Ice Dataset. (Right) A segmentation output showing the ice
(blue) and non-ice (green) regions as determined by the
model. Figure is best viewed in color.

as our ice-segmentation DNN, so it is a realistic stress test
for real-time analytics generation and broadcast. We flew a
16.1 megapixel FLIR Blackfly (5320 × 3032 px) with an 8-
mm f/1.8 lens, mounted nadir-looking, capturing 4 frames
per second. The flight controller was programmed to au-
tonomously cover a lawnmower flight pattern with cross-
track overlap. Flights were conducted along the Tanana river
at two locations: One with the unmanned system flying at
approximately 30 m altitude above ground level (AGL) with
a 1 cm ground sample distance (GSD) approximately cover-
ing a 600 m x 1,100 m area extending to ∼1,251 m from the
base station, and the other at approximately 60 m AGL with
a 2 cm GSD approximately covering a 1,200 m x 1,200 m
area. This coverage was achieved after 138 minutes of flying
with four changes of the drone’s dual 22,000 mAh batteries
(average flight time of 27.6 minutes).

An additional flight was conducted with the camera ori-
ented ∼45° down from forward, and the drone was pro-
grammed to fly up along the river bank and back. Pairs of
views covering each section of the bank, drawn from the
forward and return flight path, generate sets of wide-baseline
stereo pairs, optimal data for SfM topological reconstruction
of the river bank. This provides data with which to study the
mission requirements for monitoring coastline erosion.

Figure 5 shows a live screen capture of the ADAPT graph-
ical user interface (GUI) running on our base-station lap-

top communicating via WiFi with the payload at a distance
of 665 meters. The GUI receives reduced-resolution and
highly compressed views of the high-resolution raw imagery
and associated segmentation outputs generated on-board the
payload. We can also monitor payload operation via a va-
riety of diagnostics. A remote view of the image histogram
helps to ensure that the camera is configured with a proper
exposure setting. The GUI also provides a separate panel to
inspect image sharpness, facilitating on-the-ground camera
focusing and in-flight validation. This feedback was partic-
ularly useful in identifying the onset of motion-induced blur
at exposures longer than 2 milliseconds. Reducing the maxi-
mum exposure time to 500 µs prevented further issues, even
during 10 m/s forward flight.

During testing, we maintained WiFi connectivity out to
1 km, only losing momentary connection when wireless
line-of-site to the sUAS was blocked by treeline (safety ob-
servers stationed elsewhere maintained visibility through-
out). We verified that the payload remained operational
during communications blackouts. We anticipate that ex-
tended beyond-line-of-site operation would require alterna-
tive wireless communication systems, which tend to have
reduced bandwidth. Therefore, we also verified that segmen-
tation results could be compressed via boundary vectoriza-
tion down to 20 KB per image with a negligible loss in ac-
curacy, retaining full utility even with reduced bandwidth.
Over 800 GB of high resolution imagery was collected along
with time-synchronized INS data (at approximately 100Hz).
Various states of the river and riverbank boundary were ob-
served along with various forms of vegetation and plant life.
This data will be made publicly available.

Conclusion and Future Direction
In this paper, we presented a novel open-source system for
sUAS mission planning and development. We validated that
the payload can be provisioned with readily off-the-shelf
components, assembled, loaded with a state of the art deep
learning model for semantic segmentation, and flown in or-
der to provide real time in-situ intelligence with minimal up-
front non-recurring engineering cost. We make all hardware
plans, software, and network training code needed to repli-



Figure 5: ADAPT payload deployment over the Tanana river in Alaska (September 2021). Screen capture from base-station
laptop of the live view of ADAPT payload operation, while 665 meters away, showing a reduced-resolution view of the live
imagery and live segmentation model outputs, the image histogram, payload pose shown on a geospatial base layer, and various
diagnostics. Figure best viewed in color. Base layer imagery © 2021 Maxar Technologies and CNES/Airbus.

cate these results free and open-source to the community
with the aim of reducing the time and capital necessary to
provision an sUAS mission in the future. We hope and will
be advocating for the community to adopt this baseline re-
sult and build more features and payload configurations into
the ADAPT system. For future work, we plan further feature
development of the open-source system in support of flight
odometery and multi-sensor fusion. Additionally, we plan to
continue development of the river ice segmentation dataset
and model in order to solve the pressing issue of river ice
breakup detection and flood prediction during wet seasons.

Ethical statement
As discussed in this paper, there are many positive impacts
to be realized from an open-source, adaptable, AI-enabled
sUAS payload. It must be considered that in the making
of drone and AI technology more accessible to those trying
to improve the human condition, we also enable those who
would seek to thwart it. While AI-enabled mobile platforms
can be used for a wide range of good in HADR, they can
also be used to more efficiently poach endangered wildlife,

counteract law enforcement and response personnel, carry
out acts of violence, or collect data on marginalized popu-
lations for the purposes of disenfranchisement or exploita-
tion. It is the duty of those contributing to the democrati-
zation of AI and sUAS capabilities to be aware of potential
blind spots in our society’s technological understanding of
these elements and advocate for policies, rules, and regula-
tions which protect those most vulnerable to the potential for
abuse.
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