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Abstract

Spiking neural networks offer the potential for ultra-low
power computations on specialized hardware, as they only
consume energy when information is being transmitted. High
energy efficiency is ensured when sparse temporal codes
are used in which every neuron emits at most one single
action potential. We present a mathematically lossless ap-
proach to convert a conventionally trained neural network to a
temporal-coded spiking network. By analyzing the character-
istics of spiking neurons, we eliminate the unfavorable prop-
erties for temporal coding and show the necessity of a global
reference. Using neural oscillations for referencing, the re-
sulting network shows no loss compared to the original net-
work. Our approach makes it possible to use conventionally
trained deep neural networks at the same accuracy but with
the smallest necessary amount of energy.

Introduction
In recent years, deep neural networks (DNNs) have im-
mensely increased in performance due to improved network
architectures and more powerful training hardware. Because
of their computational advantages, they find their way into
an increasing number of applications. However, implemen-
tation in power restricted environments, such as data pro-
cessing in edge devices or decision-making in autonomous
driving, is limited by the available energy. Therefore, re-
ducing the energy consumption of neural networks directly
results in longer battery life or an increased range in these
cases.

To reduce energy consumption, today’s main approaches
include the development of new network architectures and
the optimization of the hardware running them. Another ap-
proach, that has gained traction in recent years, is the use
of biologically inspired spiking neural networks (SNNs),
which additionally also show higher computational power
(Maass 1997). By communicating with short all-or-nothing
pulses instead of continuous-valued activation functions,
these networks also promise low-powered hardware imple-
mentation. The silicon implementation of SNNs, neuromor-
phic hardware, in theory only consumes energy when infor-
mation is being transmitted. Multiple chips, e.g. Intel Loihi
(Davies et al. 2018), IBM TrueNorth (Merolla et al. 2011)

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and SpiNNaker (Painkras et al. 2013), are available for re-
search.

Despite these advantages, SNNs commonly show inferior
performance compared to artificial neural networks (ANNs)
and are therefore not widely used today. Because of their
temporal dynamics and the resulting non-differentiable ac-
tivation functions, using powerful gradient descent-based
training algorithms is not directly possible. As a result, the
three main training approaches are as follows: (1) unsuper-
vised learning approaches such as spike-timing-dependent
plasticity (Markram et al. 1997; Caporale and Dan 2008), (2)
supervised learning approaches that try to adapt gradient de-
scent based backpropagation (Pfister et al. 2006; Neftci et al.
2014; Neftci, Mostafa, and Zenke 2019), and (3) conver-
sion approaches that train ANNs with backpropagation and
map the weights to a spiking network. Among these three
approaches, conversion has shown the best performance on
popular benchmarks (Tavanaei et al. 2019).

While early work demonstrated the difficulties of map-
ping sigmoid-activated neural networks to SNNs (Perez-
Carrasco et al. 2013), the use of rectified linear units (ReLU)
(Nair and Hinton 2010) resulted in a near lossless conver-
sion (Cao, Chen, and Khosla 2014). This is caused by the
property that both the ReLU activation function and the fir-
ing rate of spiking neurons increase linearly with their in-
put. Additional approaches for weight normalization (Diehl
et al. 2015) and operators for convolutional neural networks
(CNNs) (Rueckauer et al. 2017) enabled the use of deep
SNNs, including spiking variants of high performing object
detection DNNs, e.g. YOLO (Kim et al. 2019), ResNet (Hu
et al. 2018), and RetinaNet (Mueller et al. 2021).

However, achieving comparable performance to the orig-
inal ANN comes with a side effect: as the information in the
converted spiking networks is encoded in the firing rates,
highly active neurons fire multiple times during inference,
resulting in high energy consumption. Whereas early work
estimated reduced energy consumption of 101 − 105 times
from digital computers to silicon neurons (Poon and Zhou
2011), recent analyses concluded that only very low spik-
ing activity justifies the use of spiking networks (Davidson
and Furber 2021). A practical approach measured the energy
consumption of a very small ANN deployed on an acceler-
ator chip and compared it to the converted network running
on Intel Loihi, reporting a 4.11× smaller energy consump-



tion (Blouw and Eliasmith 2020).
To achieve the necessary level of sparsity, research inten-

sifies the use of temporal coding techniques. By encoding
the information in the period leading up to the spike, neurons
with positive activations only need to fire once for computa-
tion. While learning algorithms show large potential (Chen
et al. 2021; Zhou et al. 2021), conversion approaches con-
tend with a loss of information of low activated neurons and
need additional adjustments, resulting in a larger amount of
spikes (Rueckauer and Liu 2018).

In this paper, we present a method that directly maps
ReLU activation to temporal coded spiking networks. We
address the loss of information by temporarily separating in-
put and spike generation. Our contributions are as follows:

• Analyzing the properties of spiking neurons and com-
paring them to linear activation functions. Our analysis
shows that converting ANNs to temporal coded SNNs
requires the use of global referenced non-leaky integrate-
and-fire neurons with input spike adaption.

• Proposing a network model based on previous findings,
using neural oscillation as a global reference for spike
generation. Two methods for the input spike adaption are
presented: (1) pulse duration adaption and (2) amplitude
adaption.

• Evaluating our approach and comparing it to previous
methods in terms of spiking operations and scalability.

This paper is organized as follows: Section 2 shows re-
lated work for the conversion of ANNs to temporal coded
spiking networks. In Section 3, we analyze the information
coding in spiking neurons and show how to use them for
temporal conversion. Then, Section 4 presents two meth-
ods to combine the approaches in SNNs and are evaluated
in Section 5. We conclude the paper with a discussion in
Section 6.

Related Work
In previous work on the conversion of ReLU-activated
ANNs to temporal coded spiking networks, Rueckauer et al.
(Rueckauer and Liu 2018) proposed the TTFS base method,
which modeled the incoming spikes as a weighted perma-
nent input current. When the resulting membrane potential
crosses the threshold, a spike is emitted and the neuron is re-
set to zero. To prevent additional firings the refractory period
is made very long. The main disadvantage of this method
is that neurons can potentially fire their spikes prematurely,
e.g. when a positive input raises the membrane potential
over the threshold before a negative input arrives, which
would balance out the first input out. To remedy this situ-
ation, Rueckauer et al. proposed TTFS dyn thres, where the
neurons feature a dynamic threshold that is increased by the
amount of missing input. To signal the missing input, neu-
rons fire twice: the first time as a signal and the second time
containing the temporal information.

In their experiment on the MNIST dataset with a 5 layer
LeNet5-CNN, Rueckauer et al. reported roughly 1% of loss
for TTFS base and 0.8% for TTFS dyn thres. A third ap-
proach, named TTFS clamped, relied on re-training the en-

tire network with a modified ReLU activation function, that
clips the lower activation and subsequently performs better.

Temporal Coding in Spiking Neurons
For a lossless conversion of ReLU activated ANNs to tem-
poral codes, no spike can be emitted before all inputs have
arrived. Therefore, we propose a method where each layer
has two time windows with the same duration for: (1) re-
ceiving incoming spikes and (2) emitting outgoing spikes (if
any). As a result, the necessity of a ”driving force” arises
that ensures a spiking of the neuron as long as its membrane
potential is positive.

Biological Inspiration
Biological neurons dispose of multiple ion channels that
open when a positive input current is present, leading to
an ion flow that increases the neuron’s membrane potential.
When the input stops, due to leak channels the membrane
potential returns to its resting state. When the membrane po-
tential reaches a threshold, an avalanching effect creates an
action potential that is forwarded to subsequent neurons. Ac-
cordingly, the membrane potential resets and can not spike
during a short refractory period.

The relation between input current and membrane poten-
tial has long been explored and described as a function of
four coupled differential equations in the Hodgkin-Huxley
model (Hodgkin and Huxley 1952). Because the shape of
the spike is always similar, the assumption that the action po-
tential itself does not contain any information. Multiple vari-
ants have been presented that can model different properties
of biological neurons and reduce computational complexity
(Izhikevich 2004). The simplest being the leaky-integrate-
and-fire (LIF) neuron, with the membrane potential being
calculated as follows u(t) (Gerstner et al. 2014):

u(t) = urest +RI0

[
1 − exp

(
− t

τm

)]
(1)

It can be approximated as a capacitor C in parallel with
a resistance R driven by the current I(t) with the time con-
stant τm = RC.

Conversion of Input Signals
To utilize common datasets with spiking networks, the input
first has to be converted to spikes. One approach in rate-
coded networks is to use Poisson generators that generate
spikes with the probability of the input value. In the case of
temporal coding this is not possible, as only the first spike
is from interest and there is no averaging over time. Another
approach is to feed the input values as constant current to
a non-leaking neuron. This leads to a linear increase of the
membrane potential and a subsequent spike generation. By
normalizing the input the spike will occur either directly at
the beginning or at the end of a specific time window. For
simplicity, we assume an even distribution of the spikes dur-
ing the time window, so it is directly comparable to the input
data.



Figure 1: Membrane potential of LIF neurons (with refractory period after action potential, a and b) and non-LIF neurons
(reset-to-zero after action potential, c and d) as a response to input spikes at [2, 5, 8] ms (a and c) and [4, 5, 6] ms (b and d).

Relation between ReLU and Spiking Neurons
Biologically inspired models innately react to different pat-
terns in data compared to ANNs. For example, the two input
patterns [0.8, 0.5, 0.2] and [0.6, 0.5, 0.4] will both result in
an activation of a = 1.5 for a ReLU activated neuron. Con-
versely, when representing the input as spikes spaced in a 10
ms time window, a LIF neuron will remain silent for the first
case (fig. 1a) but generate an action potential in the latter one
(fig. 1b). This coding scheme, often referred to as interspike
interval coding, is a direct result of the neuron’s leak. Fur-
thermore, as the leak is exponentially decaying, an input’s
impact on the membrane potential at spike generation will
be dependent on the membrane potential and thus can not be
used for the conversion, as in ANNs the input to the neurons
has a fixed value independently of the other inputs.

When using integrate-and-fire (IF) neurons, it can resolve
the unwanted properties of the leakage and show a better
response to the previously discussed input, but still shows
issues that are not beneficial for temporal conversion:

• No temporal information: Removing the leakage also re-
moves the temporal information of the input. As can be
seen in fig. 1c and 1d, the membrane potential has a con-
stant value after each input, and the input times can be ar-
bitrarily moved before the third spike and show the same
output time.

• Multiple pattern recognition: Many different input pat-

terns can result in generating a spike at the same time,
e.g. a few large spikes or many small ones. With that,
one single neuron can be used to detect multiple patterns
even on different hierarchical levels. Neurons in ANNs
are trained to recognize a very specific pattern and only
one linearly independent input can maximize the result-
ing activation.

• Discarding low activations: When a spiking neuron does
not receive sufficient input, the membrane potential will
not cross the threshold and thus remains silent. For ex-
ample, if the first or second input of fig. 1b was zero, the
threshold would not be reached. In contrast, ReLU will
have a certain value, as long as the total input is positive.

• Premature spiking: when an action potential is generated,
the information of later input is lost (Rueckauer and Liu
2018). For example, a large negative input at 9ms in fig.
1c or 1d will have no impact on the spike although the
total inputs should not have created any response.

Approach
To compensate for the issues of IF neurons, it raises the need
for certain requirements to adapt for temporal conversion:

Fixed Windows To prevent the premature spiking of neu-
rons, all input must be received before emitting a spike. This
can be achieved by using a listening phase, where the input
to the neuron affects its membrane potential but does not



generate an action potential. In a subsequent transmitting
phase with the same duration, an action potential is gener-
ated with the exact time being depending on the extent of the
membrane potential.

Normalization To ensure that no spikes are generated in
the first window, the weights of the original ANN get nor-
malized. Therefore, if a neuron receives the maximum pos-
sible input in the first time window, its membrane potential
will be just below the spiking threshold. In the second win-
dow, the membrane potential will be linearly increased. Neu-
rons with high potential will then emit a spike early in that
time frame, while neurons with a low potential will fire late
in that window. Neurons with negative potential will only
fire after that time frame is over and thus not have any effect
on the subsequent neurons.

Neural Oscillation Since no input is present in the trans-
mitting phase, the membrane potential remains at a con-
stant value. To push a positive membrane potential over the
threshold a linear increase is needed. Accordingly, we im-
plement a global referenced neural oscillation in the form
of a continuous input current that switches between positive
and negative after each phase. It is set such that at the end of
the transmitting phase, if no input is present the membrane
potential would only reach the threshold without emitting
a spike. A positive membrane potential after the listening
phase then results in crossing the threshold, with higher po-
tentials spiking earlier and lower potentials later.

Weighting of Input As no temporal information is present
when using IF neurons, the incoming spikes have to be
adapted depending on when they occur during the listen-
ing phase. As the amplitude of the voltage response in
spiking neurons depends on the total charge of the spike
q =

∫
I(t)dt (Gerstner et al. 2014), this gives two options

to adjust: (1) the amplitude of the incoming spike or (2) the
duration of the pulse. Both can be accomplished by coupling
them to the neural oscillation.

Bias In rate-coded conversion, the bias is commonly
treated as a constant current to the neuron. When using neu-
ral oscillations, that would lead to a spike during the first
cycle when a positive bias is present. To circumvent this is-
sue we use an additional neuron in each layer that is fully
activated and send a spike weighted by the value of the bias
to all neurons in the subsequent layer. See fig. 2

Refractory Period To prevent additional spiking in later
oscillating cycles, the refractory period of the neurons are
set to a value higher than the total runtime of the network.

Methods
Adaption can be done in two ways: (1) lowering the ampli-
tude of the spike or (2) adapt the duration of the spike

ali := max(0,

l−1∑
j=1

W l
ija

l−1
j + bli) (2)

Figure 2: Bias Lane: one additional neuron per layer that
injects an additional pulse weighted by the value of the bias.

Spike Amplitude Adaption.
The later a spike arrives, the lower its amplitude has to be.
By using e.g. an adaptive resistor that is coupled to the neu-
ral oscillation, it can reduce the spike amplitude the later it
occurs during the listening phase. Because the spikes result
in steps of the membrane potential, the listening phase has
to start at −vthr, reach 0 between phases, and grow to uthr
until the end of the second phase. The subsequent layers re-
quire a phase shift. Membrane potential ui(t) of neuron i:

ui(t) =
∑

Wij
tj
T
δj + bli (3)

with T being the duration of the listening phase and δ the
Dirac delta function.

Due to the linear increase of the membrane potential dur-
ing the transmission phase, the resulting spike time relative
to its time frame can then be calculated with:

ti(u) = (uthr − ul+1)T (4)
with ul+1 being the membrane potential at the beginning

of the transmission phase of layer l and the beginning of the
listening phase of layer l + 1, respectively.

Pulse Duration Adaption
By adapting the duration of the pulses, after an input oc-
curred a constant current is fed to the neuron during the re-
mainder of the listening phase. Therefore, early spikes have
a larger impact on the membrane potential at the end of the
phase than later ones. This can be done by making the pulse
duration as long as the duration of one oscillation. Negative
current from oscillation during the listening phase, positive
during transmitting. As the positive and negative phases are
reversed for the connecting layer, the sign of the pulses will
also be reversed and the threshold set to −uthr. The mem-
brane potential ui(t) of the neuron i at the end of the listen-
ing phase then can be calculated with:



Figure 3: Neural oscillation method (left half: listening
phase, right half: transmission phase). (a) Input spikes dur-
ing listening (left) and action potential generated from the
two methods (right). (b) Input and (c) resulting membrane
potential with spike adaption method. (d) Input and (e) re-
sulting membrane potential with pulse duration adaption.

ui(t) =
∑

Wij(T − ∆tj)qp + bliqp (5)

∆tj the time of the incoming pulse relative to the start of
the phase, qp the total charge of a pulse. The spike time is
calculated like in eq. 4.

Experiments
As the approach is mathematically the same as traditional
machine learning, comparing the accuracy in a simulation
is not meaningful, as it directly depends on the accuracy of
the original ANN. Instead, we compare the inference time
to previous approaches and link the spiking operations to
previous work that measures that of rate-coded conversion
methods.

Comparing to Temporal Coded Conversion
Previous work (Rueckauer and Liu 2018) did not rely on
global reference and thus showed problems with premature
spiking of neurons. An adapted version could reduce the
problem by using dynamic thresholds, which leads to dou-
bling the number of spikes. We train two neural networks
with different depths on the MNIST dataset (LeCun et al.
1998) and compare this approach to our method.

Model Network Loss # spikes

TTFS base LeNet-5 3.85% 2011

TTFS dyn thresh LeNet-5 1.77% 3867

This work LeNet-5 - 2854

TTFS base 9-layer CNN 9.18% 4670

TTFS dyn thresh 9-layer CNN 6.36% 9132

This work 9-layer CNN - 8234

Table 1: Comparison of our method to previous temporal
coding approaches (Rueckauer and Liu 2018) on the MNIST
dataset. The LeNet-5 Architecture contains 7620 neurons
(7625 including the bias lane) and the 9-layer CNN (a vari-
ant of the LeNet-5 architecture with additional convolutional
layer) in a total 13900 neurons (13909 including the bias
lane).

In recreating the results of the previous work, we achieved
similar performance as reported for the LeNet-5 network ar-
chitecture (see tab. 1). Our approach shows the same accu-
racy of 98.7% as the original ANN, while the TTFS base
and TTFS dyn thresh methods showed a loss of 3.85% and
1.77%, respectively. The number of spikes roughly doubles
for TTFS dyn thresh and our approach is roughly in the mid-
dle.

When scaling the network to a deeper architecture,
namely a 9-layer CNN based on LeNet-5 with additional
convolutional layers, the TTFS base and TTFS dyn thresh
methods show large loss. As pointed out by Rueckauer et
al., the TTFS base method suffers from prematurely spiking.



For the TTFS dyn thresh method, we assume that although
the use of an additional spike per neuron, it can reduce the
problem but not completely remove it, as the first spike is
only fired when the first input arrived. When a neuron in a
subsequent layer has already fired its second spike, it will
also lose the information. By scaling the network, the inter-
val between the spike times of different layers increases and
reinforces this problem. In essence, both approaches cut off
lower activated input the deeper the network gets.

For the deep network, the TTFS base method requires the
least amount of spikes and the mose TTFS dyn thresh. Our
approach is again in between, but closer to the latter.

Comparison to Rate Coded Conversion
For comparison with a rate-coded conversion, we train a
neural network on a portion of the speech commands dataset
(Warden 2018), with a similar network architecture as in
(Blouw and Eliasmith 2020) and with an input layer of 3920
neurons and two hidden layers with 256 neurons. As in the
original work a Hybrid SNN was used where the input was
digitally processed and after the first layers spikes were gen-
erated, we only count the spikes from that layer as well.

Model ANN SNN # spikes

(Blouw et al. 2020) 81.8% 81.0% 61362

This work 82.1% 82.1% 4081

Table 2: Comparison of our method to rate coded approaches
on the speech recognition dataset. The architecture contains
an input layer with 3920 neurons and two hidden layers with
256 neurons. Our approach needs one additional neuron per
layer.

While our ANN model achieves comparable 82.1% in
accuracy compared to 81.8% in the original work, our ap-
proach stays at the same accuracy after conversion, whereas
the rate coded approach drops to 81.0%. Whereas the orig-
inal work needed 61362 SOPs, our approach reduces it by
a factor of roughly 15 to only 4081 SOPs averaged over the
test set. It is to mention, that nearly all the neurons in the
input layer generated a spike and less than 200 spikes were
generated in the hidden and classification layer.

The original work compared the energy consumption of
running the network as an ANN on a neural accelerator and
as a converted SNN on Intel Loihi. The SNN reported a
4.11× energy reduction compared to the original network.
The 15× fewer spikes in our approach should be considered
with caution, as the additional need for a global reference
requires additional power and thus can not directly be used
as a factor for possible energy reduction.

Discussion
In this paper, we propose a method for the conversion of con-
tinuous activated neural networks to temporal coded SNNs.
By using globally referenced neural oscillation it enables to
map the exact value of the ReLU activation function into a

listening phase and then emit a spike during a transmission
phase. As this approach is mathematically equivalent to the
calculation of ANNs, the conversion is in fact lossless.

We validate the performance of the method in two ex-
periments and show that it scales to deep network architec-
tures and also reduces the number of spikes compared to
rate-coded conversion by a factor of 15. Although the per-
formance is lossless in theory and in simulation, deploying
the method on neuromorphic hardware can lead to accuracy
loss. When running on digital neuromorphic hardware, the
network is quantized and the accuracy is subsequently de-
pendent on the time steps of the simulation. On analog neu-
romorphic hardware, noise can also infer with the accuracy
and also would need to run the network slower. The use of
a global reference is necessary for this conversion approach,
but might be incompatible with current available neuromor-
phic hardware. Furthermore, the use of neural oscillations
results in additional energy consumption.

Overall, our method shows a lossless approach for con-
version to temporal coded neural networks and enables new
approaches in neuromorphic hardware.
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