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Abstract

In recent years, the next Point-of-Interest (POI) recommen-
dation has been widely concerned with the prosperity of
location-based social networks. Its purpose is to predict users’
next activities according to their current time and place. How-
ever, it mainly faces two challenges: 1) with the change of
time, the historical behaviors of users show diversity and
complexity, and 2) due to the sparsity of user trajectory data,
it is hard to capture users’ preferences in the corresponding
time pattern. Therefore, we propose a Time-Aware Dynamic
Self-Attention Model TADSAM to predict the next decision-
making activities of users in the future. Firstly, we use an
extended self-attention mechanism to deal with the complex
check-in records of the user. Secondly, considering the influ-
ence of time, we divide the user check-in records into differ-
ent time windows and develop a personalized weight calcula-
tion method to exploit temporal patterns of the user’s behav-
iors. Experimental results demonstrate that our method out-
performs the novel models for the next POI recommendation
on sparse check-in data.

Introduction
The rapid development of the mobile internet makes
location-based social networks (LBSN) such as Gowalla and
Foursquare more and more popular in our daily lives. The
large amount of user data generated by LBSN makes it pos-
sible to recommend the next POI to users by understanding
users’ behavior.

The traditional POI recommendation recommends the ap-
propriate POIs to users according to the general static prefer-
ences of users while ignoring recent visits. On the contrary,
the next POI recommendation determines the next decision-
making activity of the user according to the current location
and previous information of visits. At the same time, many
studies have achieved good results in the next POI recom-
mendation (Chang et al. 2018; Yu et al. 2020; Luo, Liu, and
Liu 2021). However, these methods only predict where the
user goes next but do not when the user makes the next de-
cision. We think it is crucial to predict when the user goes in
the next POI recommendation. For example, the user’s next
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Figure 1: An example of the behavior distribution of three
users in a day

.

behavior may not occur until a week or a month later, so our
next POI recommendation is almost meaningless.

Therefore, the time factor of user visits plays a vital role.
In the long run, the user’s trajectory behavior is periodic.
During working days, users will consider POI activities near
the company but think POI or other entertainment places
near home during the weekends. Analogously, the interest
distribution of users within a day also changes dynamically.
We give the sequence trajectories of three users in a day, as
shown in Figure 1. From the historical tracks of the three
users, we find that they have roughly been to the same place
or participated in similar activities. Suppose you want to rec-
ommend the next POI to User 3. If only based on the pre-
vious historical trajectory and users with similar activities,
the previous model will easily recommend the gym to users.
However, User 3 may not want to go to the gym at 8:00 p.m.,
which is not a satisfactory recommendation result for User
3. It can be seen that time plays a crucial role in POI recom-
mendation in both the long term and short term.

Previous work has conducted extensive researches on POI
recommendation with time contexts, which are classified
into two types. One type is developed based on the matrix
factorization method. The entire set of possible timestamps
is mapped to a limited time slot (Zhao et al. 2017), assum-
ing the user’s signature timestamp has the same impact in



the same period. Then construct a low-dimensional space to
capture the characteristics of time slots and combine them
with other preference types. However, it is difficult to de-
termine which time granularity will be used for time map-
ping slots. Therefore, it will also affect the model to make
accurate recommendations. The other type mainly focuses
on sequential transitions, such as the Markov model and the
RNN model. In the early POI recommendation, the research
found that the user’s next behavior is easily affected by the
user’s current behavior. Many studies have begun to use the
Markov chain model to pay attention to the sequential re-
lationship of users’ historical trajectory (Chen et al. 2018;
Rendle et al. 2010). However, when dealing with user se-
quential tracks, the Markov chain model can only predict
the user’s next behavior through a single behavior of the
user’s historical trajectory, which often reduces the accu-
racy of recommendations. Subsequently, the recurrent neu-
ral network model with memory mechanism has become a
research hotshot model in POI recommendation. There are
various time-aware models for the next POI recommenda-
tion (Zhao et al. 2016; Li, Shen, and Zhu 2018). The RNN
model has achieved good results in the sequential recom-
mendation. However, the next POI recommendation’s se-
quential dependence is powerful, and the RNN model is un-
stable in dealing with long sequential dynamics, so there is
information loss during the calculation. Moreover, the weak-
ness of parallel computing ability result in easy establishing
false dependencies.

In recent years, a new and original attention mechanism
has emerged (Vaswani et al. 2017). It has been employed ex-
tensively in machine learning and NLP, which has achieved
good results. The novelty of it is that it captures the depen-
dence of long sequences. Intuitively, it has powerful par-
allel computing ability. Therefore, inspired by the mecha-
nism, we propose a time-aware dynamic self-attention net-
work TADSAM to solve the above limitations in the next
POI recommendation. TADSAM uses a multi-head attention
mechanism to translate between check-in sequences. To con-
sider the influence of time context, we use the relative time
matrix of user trajectory to expand the vanilla self-attention
mechanism. Moreover, to better explore the behavior pat-
tern of the user’s historical trajectory sequence, we divide
the user’s historical check-in records into different time win-
dows and use the personalized weight calculation method to
obtain the user’s current preference. The specific contribu-
tions are as follows:

• We propose a time-aware-dynamic self-attention net-
work method. We use a relative temporal matrix to ex-
pand the vanilla self-attention mechanism to explore the
relationship between user check-in records. Through this
method, we can not only explore the complex and di-
verse behavior patterns of users but also understand the
changes in users’ interests.

• We divide the user’s historical check-in sequence into
different time windows and design a personalized weight
calculation method to explore the time pattern of user be-
havior more effectively.

• We combine the popularity and geographical impact of

POI to improve the system’s performance to overcome
the problem of data sparsity and facilitate the retrieval of
the system.

• We conducted complex comparative experiments on two
public data sets to evaluate the performance of the
method. The results show that our proposed method is
superior to the advanced method recommended by the
next POI for sparse data.

Related work
In early studies, the POI recommendation only recom-
mended the first few popular POIs to users (Ye, Zhu, and
Cheng 2013), which provides a reference for users to select
the next location. But this recommendation method is too
simple to meet the needs of users. At present, researchers
propose many models for POI recommendation, such as the
classical collaborative filtering model (Xiong et al. 2010;
Ye et al. 2011) and the matrix factorization model (Liu and
Aberer 2013; Li et al. 2021). (Ye et al. 2011) combine the
geographical and social influence of users based on collab-
orative filtering. (Liu and Aberer 2013) propose the method
based on the matrix factorization, which considers context
and social information. (Li et al. 2021) calculate the context-
aware similarity between different users based on matrix
factorization technology to capture the impact of temporal
and spatial characteristics on users.

Although these methods can effectively alleviate the prob-
lem of data sparsity, it does not mine the relationship deeply
between user behaviors. Research shows the user’s histor-
ical trajectory is a sequential relationship, which is user’s
next behavior decision will be affected by the previous be-
havior. The sequential model method was prosed based on
the Markov chain to predict the possibility of the user’s
next behavior (Chen et al. 2018; Rendle, Freudenthaler, and
Schmidt-Thieme 2010) in the early stage of the next point-
of-interest recommendation. But the Markov chain model
mainly focuses on the transition probability between two
visits and does not understand the relationship among the
sign-in records of the user’s all trajectory. Challenged by
the defects of Markov models, the recurrent neural network
model with memory mechanism has received widespread
attention. The spatiotemporal method (Zhao et al. 2016)
defines the relationship among users, time, and local for
the next POI recommendation. HST-LSTM (Kong and Wu
2018) integrates spatiotemporal influence into the LSTM
model, which alleviates the problem of data sparsity. (Sun
et al. 2020) module two LSTM models to obtain users’ long-
term and short-term preferences, respectively. (Liu et al.
2021) propose a category-aware gated recurrent unit (GRU)
model to mitigate the negative impact of sparse check-in
data, capture long-range dependence between user check-
ins.

In recent years, the application of the attention mecha-
nism in machine translation and natural language process-
ing has attracted widespread attention. (Kang and McAuley
2018) capture the relationships between the user’s sequen-
tial behaviors by using a self-attention mechanism. (Zheng
and Tao 2020) utilize two attention mechanisms to dynami-



cally obtain the user’s long-term and short-term preferences,
respectively. STAN (Luo, Liu, and Liu 2021) uses a bi-layer
attention architecture that firstly aggregates spatiotemporal
correlation within user trajectory and then recalls the tar-
get with consideration of personalized item frequency. How-
ever, these methods neither explore the time relationship be-
tween the user trajectory sign-in records nor the time pattern
of the user’s behaviors. Inspired by (Chen et al. 2019; Yu
et al. 2020), we propose a time-aware dynamic model to ad-
dress the problems.

Problem Formulation
We define the set of user by U, and the set of location by L.
In LSBN, each POI is a unique geographic identifier associ-
ated with longitude and latitude. A check-in record of each
user ui is a 3-tuple ri = (ui, li, ti), which means that user
ui visits POI li at the time point ti. We denote the check-
in trajectory of each user by Traj (ui) = {r1, r2, . . . , rmi

}.
We convert each user’s trajectory sequence into a fixed se-
quence length, i.e. Seq (ui) = {r1, r2, . . . , rk}, where k de-
notes the maximum length that we consider. In addition, we
take the time interval between two locations as the element
of relative time matrix. Each element ∆t

ij is represented as
∆t

ij = |ti − tj |:

∆t =


∆t

11 ∆t
12 · · · ∆t

1k
∆t

21 ∆t
22 · · · ∆t

2k
...

...
. . .

...
∆t

k1 ∆t
k2 · · · ∆t

kk

 (1)

Definition 1 (Next POI recommendation)
Given the user’s check-in trajectory Traj (ui) and prediction
time tN+1, the task of the next POI recommendation is to
predict the possibility of the POI li that user will visit at the
time tN+1.

The Model Architecture
We first introduce the components of the dynamic model,
where include the embedding layer, self-attention layer, time
pattern layer, and prediction layer. The overall architecture
of our model is shown in Figure 2. To learn the parameters,
we use the binary cross-entropy loss as the objective func-
tion.

Embedding Layer
The embedded layer is composed of the user’s historical tra-
jectory matrix and the relative time matrix. The embedding
layer mainly studies the latent representation of the trajec-
tory matrix and time relative matrix of users. We create four
embedding indicators, i.e. eu ∈ Rd, el ∈ Rd, et ∈ Rd

and E(∆t) ∈ Rk×d, to represent user, POI, discrete-time
and time relation matrix embeddings, respectively, where
d represents the dimension of embedding space. The orig-
inal timestamp of the user’s check-in record is discrete,
so we map time to 168 dimensions, corresponding to 168
hours a week, which helps understand the specific time
when the user visits a place and reflects the periodicity
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Figure 2: Time-aware dynamic self-attention model and in-
ternal structure of self-attention block

.

of the user’s trajectory. The trajectory embedding of each
user sequence Seq(ui) = {r1, r2, . . . , rk} is represented as
Eu = [er1 , er2 , . . . , erk ] ∈ Rk×d.

The time relative matrix expands the vanilla self-attention
mechanism effectively reflects the relationship of user tra-
jectory sequence. The relatively short time indicates a strong
dependence between the two sign-in sites.

Extended Self-attention Layer
We propose a time-aware self-attention model to input a time
dynamic trajectory sequence. Research shows that the suc-
cessive check-ins of users are time-sensitive. Considering
the same POI recommendation at different times, the sub-
sequent check-in of users may be different. Inspired by the
relative position self-attention mechanism (Shaw, Uszkor-
eit, and Vaswani 2018), we extend the self-attention to con-
sider the time intervals between two access locations in a
sequence. We take the relative time matrix as the relative
position of self-attention, which can capture the relationship
between the items of the user track sequence. The relative
position of self-attention will be more efficient than the ab-
solute position (Vaswani et al. 2017).

The self-attention layer includes two sub-layers: the self-
attention layer with multiple heads and the feedforward net-
work layer (FFN). Firstly, we use the multi-head attention
mechanism to analyze users’ history tracks with time infor-
mation from different angles for mining users’ various pref-
erences. The specific implementation is as follows:

Gu = MSA(Eu) = concat
(
head1, head2, · · · , headn

)
WH

(2)

where WH ∈ Rndv×d is a transformation matrix for mod-
eling the correlations of different heads, n is the number of
heads, dv = d/n, concat function connects several vectors
and Gu = [gu1 , g

u
2 , · · · , guk ] ∈ Rk×d is the output of MSA.

headn is the output of n-th head. The number of the head
is adaptively adjusted according to the size of the dataset.
Then the improved self-attention mechanism is calculated



as follows:

headn =

k∑
i=0

αij (eriWV + ∆ij) (3)

where WV ∈ Rd×d represents input matrix of value. We cal-
culated each weighting coefficient by using a softmax func-
tion, as follows:

αij = softmax

(
eriWQ (erjWK + ∆ij)

T

√
dv

)
(4)

Where WQ,WK ∈ Rd×d represent input matrix of query
and key respectively.

√
dv is to prevent the inner product

from being too large.
Our time-aware attention layer linearly combines the

users’ historical trajectory information and the relative time
information with self-adaptive weight. After the time-aware
attention layer, we apply the feedforward network to endow
nonlinearly the model, which improves the model ability of
expression.

FFN(Gu) = ReLU(GuW1 + b1)W2 + b2 (5)

As discussed in (Kang and McAuley 2018), after the super-
position of the extended multi-head self-attention layer and
feedforward network, there will be more problems, such as
overfitting, unstable training process, and the need for more
training time. Therefore, we add layer normalization, resid-
ual connection, and dropout technique to solve these prob-
lems after the multi-head attention mechanism and the feed-
forward network layer, which expressed as follows:

SA(Eu) = LN(Dropout(MSA(Eu)) + Eu) (6)

Au = LN(Dropout(FFN(Gu)) + Gu) (7)
In the above two expressions, SA (Eu) represents the results
of the multi-head self-attention layer processed by dropout
technology, residual linking, and layer normalization. Sim-
ilarly, Au is the result of processing by FFN, which is also
equivalent to the final output. The output is the user’s com-
plex preference matrix with temporal information and cor-
relations from a check-in sequence. Algorithm 1 represents
an extended self-attention network to extract users’ diverse
preferences.

Time Partten Layer
The user’s long-term behaviors contain some core interests,
which will not change with time and have a certain period-
icity. In the self-attention layer, we discuss the time relation-
ship between the two visit sites, which is far from enough.
Research shows that affected by the clock, the user’s pref-
erences are different at different periods of the day. We fur-
ther explore the time pattern of the user’s preferences. It is
unwise to divide the day evenly because the user’s daily ac-
tivities distribute unevenly. Referring to the method of (Yu
et al. 2020), we determine the span of this period by us-
ing the probability density of the user’s visits behavior dur-
ing the day. The CatDM (Yu et al. 2020) adopts a personal-
ized weight calculation method to accurately obtain the in-
terests of each time window, which has achieved good re-
sults. Therefore, we use the same way to explore the time

Algorithm 1: Training trajectory sequence of users by the
extended self attention
Input: Check in trajectory matrix of user, Eu; Relative time
matrix of user trajectory, E(∆)
Parameter: WH,WQ,WK,WV,W1,W2,b1,b2

Output: Diverse preference representation matrix of user,
Au;

1: while Eu,∆t do
2: for self-attention do
3: Eu trajectory matrix of user
4: E(∆) trajectory matrix of user
5: Get Gu by using Equation(2)
6: end for
7: for feedforward do
8: Characteristic output Gu of multi head attention

mechanism
9: Get Au by using Equation(7)

10: end for
11: end while
12: return Au

pattern of user preferences. We designed multiple windows
to distinguish the user’s behavior and extract the clock influ-
ence for different periods within a day, as shown in Figure
2. Each window Wu

i is defined as follows:

Wu
i =

{
auz |tuz ∈

[
tsi , t

s
i+1

]}
(8)∫ tsi+1

ts
i

f(xt)dx =
1

12
(9)

Here, we determine the probability distribution and prob-
ability density of the user behavior in two experimental data
sets. We assume that f(xt) is the probability distribution
of the user’s behavior, and

∫ tsi+1

ts
i

f(xt)dx is the probability
density. We divide 12-time windows, and we let the proba-
bility density of each time window be 1

12 . Let the equivalent
probability density of the time windows determine the time
interval of each time window.

We can think of each window as a sub-sequence of the
user’s behaviors, which means that each time window rep-
resents the user’s short-term preferences in the period. To
capture the user’s interests of each time window, we use a
window state to combine the user’s check-in behaviors for
each time window. Let |Wu

i | represent the number of check-
ins within each time window. Each time window state Wi

with size d is as follows:

Wi =

∑|Wu
i |

n=1 a
u
n

|Wu
i |

(10)

Next POI Prediction
We know that POI recommendation is affected by many
factors, such as geographic influence, category influence,
temporal and spatial influence, et al. Therefore, to facilitate
the model to search for accurate POIs, we incorporate ge-
ographic factors and popularity. Given a POI candidate set
L = {l1, l2, . . . , lL}. According to the geographical factors



and popularity of POI, we gain a group of new POI candi-
date sets with short distance and high popularity. Firstly, we
should delete some POIs that are far away from the user ac-
cording to the distance of the POI. On the POI recommenda-
tion, the user behaviors follow a power-law distribution, We
filter some POIs far from the user’s current location and ob-
tain a batch of initially filtered POI candidate sets. Because
the POI is visited frequently, the POI is more popular. So, we
eliminate some unpopular POIs according to the popularity
of POIs. The popularity of a point of interest equals the re-
sult, which divides the number of users visiting the point of
interest by the number of users visiting all points of inter-
est in a day. Finally, we get a batch of new closer and more
popular POI candidate sets: L′ = {l1, l2, . . . , lc}. Then the
embedded location candidates E (L′) = {el1 , el2 , . . . , elc}.
We filter out POIs that are more than 5 kilometers away
from the user’s current location and have a popularity of 0.5.
The score of each interest point in the new candidate interest
point set is calculated, and the system will recommend the
top-K interest points to users according to the scores; the
score rpoiu of each candidate interest point is as follows:

rpoiu = pu · eTli + et · eTli (11)

The above function is a scoring function. We select a can-
didate POI and calculate the possibility of the user access-
ing the candidate POI according to the user’s current pref-
erence and the time to be predicted. For the above formula,
the first term indicates the user’s preference for the candidate
location, the second term shows the correlation between the
time that we will forecast and the candidate poi. The score
is higher, and the user is more likely to visit the candidate
POI. Finally, a top-K recommendation list is presented and
sent to the user according to the calculated score.

Model Training
In this work, we design a personalized recommendation sys-
tem model based on a temporal-aware self-attention mecha-
nism. Next, we use the scores of the recommendation system
to delimit an objective optimization function. We use the bi-
nary cross-entropy loss function to train the model, and the
objective function is as follows:

Loss = −
∑
u∈U

(∑
Pu

log
(
σ
(
rpoiu

))
+
∑
Nu

(
1− σ

(
rpoiu

)))
(12)

In the above objective function, we randomly select a lo-
cation that the user doesn’t visit from the filtered POI as a
negative sample. We use dropout technology to prevent over-
fitting of the optimization function.

Experiments
Experimental Setup
Dataset. In this section, we will use two public datasets to
experiment with the effectiveness of our proposed model,
i.e., foursquare and Gowalla. Each check-in record of
datasets contains a user ID, POI ID, timestamp of a user
who has visited the location, and longitude and latitude of

Datasets Users POIs Check-ins
Forsquare 1083 9989 179468
Gowalla 4438 11235 761566

Table 1: The statistics of two datasets.

the side. In these two datasets, we first need to filter out those
users with less than ten check-in records to ensure the valid-
ity of the models. The two processed datasets in the Table 1
are as shown:

Baseline Methods. In this section, we select several base-
lines to compare with our model to prove the effectiveness
of our proposed model. Several baseline methods are as fol-
lows:

• POP : The method will recommend the most popular
POIs to users without considering the user’s personal
preferences and recent visits (Ye, Zhu, and Cheng 2013).

• FPMC− LR : This method is a personalized POI rec-
ommendation, which adopts the combination of matrix
decomposition and Markov chain (Cheng et al. 2013).

• PRME−G : The method of the personalized POI rec-
ommendation is novel, in which not only modules the
whole sequence of users’ trajectories, but also considers
the metric embedding of the distance between the current
location and the next location (Feng et al. 2015).

• STRNN : It has based on the RNN model for the
next POI recommendation. This recommendation uses
the time interval and geographical distance of users’ suc-
cessive check-ins to module the RNN model (Liu et al.
2016).

• TMCA : It is based on LSTM, and the method inte-
grates a variety of contextual information with attention
mechanisms, including Spatio-temporal information and
category information. For equality, we remove the cate-
gory information (Li, Shen, and Zhu 2018).

• STGN : It is an improvement of LSTM. It integrates
time gate and distance gate to model the Spatio-temporal
context information of successive check-ins (Zhao et al.
2020).

Evaluation Metrics and Implementation Details. To
evaluate the recommendation performance, we use two gen-
eral evaluation metrics, i.e., Recall@N and NDCG@N. Re-
call@N measures the correctness of POI in top-K recom-
mended POIs, and NDCG@N measures the quality of the
top-K ranking list. The two evaluation metrics are higher,
and the recommendation performance is better. In this pa-
per, we choose N={5, 10, 20} to represent different results
of Recall@N and NDCG@N.

In this experiment, we set the initial learning rate to
0.0035 and the dropout rate to 0.75. We set the embedded
dimension d of each model as 32 and the maximum se-
quence length as 64. We use TensorFlow to complete the
experiments and use the minimum batch Adam optimizer to
optimize our model. We set the batch size 128 and a self-
attention block.
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(a) Recall@N on Foursquare.
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(b) NDCG@N on Foursquare.
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(c) Recall@N on Gowalla..
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Figure 3: Performence comparison of models on two datasets

Dataset Variants Recall@5 Recall@10 Recall@20 NDCG@5 NDCG@10 NDCG20

Forsquare
TADSAMNW 0.1765 0.2143 0.2642 0.1482 0.1635 0.1863
TADSAMAW 0.1985 0.2693 0.2836 0.1642 0.1860 0.2175
TADSAMNT 0.2023 0.2813 0.2945 0.1760 0.1963 0.2245
TADSAM 0.2274 0.3455 0.3622 0.1806 0.2093 0.2554

Gowalla
TADSAMNW 0.1645 0.2062 0.2473 0.1062 0.1426 0.1763
TADSAMAW 0.2064 0.2893 0.3285 0.1143 0.1596 0.1895
TASAMNT 0.2075 0.2932 0.3342 0.1249 0.1642 0.1968
TADSAM 0.2162 0.3064 0.3485 0.1389 0.1802 0.2326

Table 2: Performance comparison of different variants of TADSAM

Performance Comparison
In this section, we analyze the performance of our proposed
model TADSAM and compare it with other baselines, as
shown in Figure 3. The relevant indicators of our model in
both data sets are higher than all baselines. For example,
in the Foursquare dataset, compared with the best baseline
STGN, TADSAM improves by 17.8% and 9.01% in Re-
call@N and NDCG@N, respectively. At the same time, our
model improves by 21.9% and 17.6% on the same metrics
in the Gowalla dataset. In addition, we observe the compar-
ison results of all baselines. The performance of FPMC-LR
and PRME-G are better than Popu, which indicates the ne-
cessity of considering sequential information in the next POI
recommendation. The ST-RNN, TMCA, and STGN perform
better than FPMC-LR and PRME-G, which proves the effec-
tiveness of LSTM in the sequential recommendation and the
necessity of modeling the whole check-in sequence. From
these models, we can see that spatiotemporal context in-
formation also has a particular impact on recommendation
performance. Our model performs better than all baselines,
which also shows the advantage of the self-attention mecha-
nism in modeling the whole check-in sequence.

Impact of Different Components of TADSAM
titlespacing*subsection 0pt1.25ex plus 1ex minus.2ex.5ex
plus .2ex To verify the effectiveness of different parts of
our proposed model, we further conduct variant experiments
of the model. We set the time window to understand users’
preferences in different periods, which also alleviates the
problem caused by data sparsity. Therefore, we need to ex-
periment to prove its effectiveness. TADSAMNW repre-
sents a simple model without divided windows. In this pa-

per, we use the probability density of users’ check-ins be-
havior on the day to allocate the time windows. To verify
the effectiveness of the allocation method, we divide the
time window evenly. We use TADSAMAW to represent the
time window model that has been divided average and a
time interval matrix to capture the relationship between two
sign-in behaviors of users. To verify the effectiveness of the
time matrix, we use the vanilla self-attention mechanism to
model the whole check-ins sequence of the user to capture
the user’s preferences, which we named TADSAMNT. The
specific experimental results in Table 2 as shown. From the
experimental results of three variants, our model is better
than all variants, which shows the effectiveness of different
components of the model.

As can be seen from the above Table 2, TADSAMNW

performance is significantly worse than the other two vari-
ants, which also proves that having different time windows
can more accurately understand users’ preferences. The ex-
perimental results of TADSAMAW show that the unbalance
time windows can appropriately improve the performance of
the model. From the results of TADSAMNT, the time con-
text information has some impact on the recommendation
performance of the model. Overall, our model performance
is better than all variants, and it also proves the effectiveness
of different components of the model.

Influence of Hyper-parameters
There are two crucial Hyper-parameters in our proposed
model TADSAM: embedded dimension and number of self-
attention blocks. As shown in figure 4, due to space con-
straints, we only list the Recall@N experimental results
on Foursquare and Gowalla. From the experimental results,
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Figure 4: Performence comparison of models on two datasets

the model can better extract the characteristic information
of POI with the dimensionality increases. However, the
model’s performance tends to be stable when the size of
the dimension exceeds 32. We also test the number of self-
attention blocks, and the experimental results show that the
increase of self-attention blocks can not improve the recom-
mendation performance of the model. This situation may be
an overfitting problem caused by the increase of model pa-
rameters with the self-attention block.

Analyze the impact of filtering
In this paper, we filter a batch of candidate sets into two
layers to reduce the search space of the model. To prove
the rationality of filtering, we also added filtering to other
comparison baseline methods. Because ST-RNN, TMCA,
and STGN are proposed based on RNN, we only conduct
the comparative experiment on ST-RNN. Figure 5 shows
the comparison results between filtered and unfiltered in the
Foursquare dataset.
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Figure 5: Performance of approaches with Filter

Analysis of results
The above experimental results fully prove the effective-
ness of our proposed model. In the experimental results, we
found that our model is much better than the method based
on the RNN model. Because the RNN model gradually re-
veals some disadvantages with the increasing length of the
user trajectory sequence. In addition, the parallel computing

ability of the RNN model is poor. It is easy to establish false
dependencies because it will over assume that any adjacent
item in the sequence is highly dependent. Our model applies
a self-attention network. The self-attention of the power-
ful parallel computing ability captures internal relationships
easily between the check-ins. We use the time relative matrix
of user trajectory to expand the vanilla self-attention mech-
anism, which captures the time context information of user
trajectory. To further explore the time pattern of user trajec-
tory, we add different time windows to determine the user’s
preferences in each period. By comparing the results of com-
ponent experiments of the model, the addition of time win-
dows has significantly improved the recommendation per-
formance.

Conclusion
In this paper, we construct a time-aware dynamic model
for the next POI recommendation task. Firstly, we use the
relative time matrix to expand self-attention blocks, which
establish a dynamic temporal relationship and extract the
user’s diverse interest preferences. Secondly, we divide the
obtained preference features into different periods and use
a clever linear combination method to calculate the user’s
preferences. Finally, we calculate the probability of users
visiting each candidate POI according to the filtered candi-
date POIs.
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