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Abstract

Post-training quantization (PTQ) has been an efficient ap-
proach to quantize the off-the-shelf model. However, without
any end-to-end finetuning, the quantized model drops much
accuracy as bit-width goes down, especially for the activa-
tion quantization. Our preliminary experiments suggest that
the activation distribution changes with different input data
points. To close the large gap produced by activation quan-
tization, we propose dynamic activation step size for PTQ.
Specifically, we assign a router function that depends on the
incoming activation and generates a suitable step size for ac-
tivation quantization. Moreover, we come up with a two-stage
tuning algorithm for learning the router function. Our method
can achieve good results without the help of the labeled full
training dataset. We test our methods on the CIFAR10, CI-
FAR100, and ImageNet datasets, empirical results demon-
strate that our method can recover most accuracy drop of ac-
tivation quantization.

Introduction
Deep neural networks (DNNs) have achieved great success
in many tasks including image classification (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016), object detec-
tion (Ren et al. 2017), object segmentation (Ronneberger,
Fischer, and Brox 2015), object tracking (Bewley et al.
2016), etc. However, for the requirement of high accuracy,
DNNs usually suffer from massive parameters and high
computational complexity, which limits their deployment on
mobile devices. To address this problem, several model com-
pression methods have been proposed (Zhang, He, and Jian
2017; Molchanov et al. 2020; Polino, Pascanu, and Alistarh
2018; Zhang et al. 2017; Nagel et al. 2019). Among these
methods, the network quantization technique draws more
and more attention since it can largely lessen the network
storage and meanwhile accelerate the inference speed by re-
ducing the bitwidth of the network parameters and activa-
tions.

Quantization will cause severe performance degradation.
To narrow the accuracy gap between the original model and
the quantized model, most popular works resort to retrain-
ing the quantized model. However, in most actual scenarios,
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training data are not always available for fine-tuning consid-
ering the privacy problem. Besides, retraining will inevitably
increase the development time of models and delay the pro-
duction cycle in the industry. In the paper, we focus on quan-
tizing the neural networks without retraining, which is called
Post-training Quantization (PTQ).

In practice, activation step size contributes greatly to the
quantization loss. Therefore, to alleviate the performance
degradation, it is better to find an appropriate activation step
size. However, we find that the activation distributions for
different input samples differ greatly. Hence, it is unrealistic
to resort to a fixed value to accomplish the target of find-
ing an appropriate activation step size. To this end, we pro-
pose dynamic activation step size for PTQ. The method can
change the activation step size dynamically according to in-
coming activation and reduce the quantization by a learning
way.

In particular, we make the following contributions:

• we propose a router function that takes the incoming ac-
tivation as input to predict the optimal step size for acti-
vation quantization. Furthermore, an elaborate designed
two-stage algorithm is also introduced to learn the router
function.

• Our method needs not the usage of data labels, which
make it enjoy a wide range of application scenarios.

• We evaluate the proposed method on the CIFAR10, CI-
FAR100, and the large scale ImageNet datasets for com-
prehensive comparison with state-of-the-art quantization
neural networks in image classification. Extensive exper-
imental results show that our method can recover the
most accuracy drop caused by activation quantization
and performs remarkably.

Preliminary
Quantization
Quantization of neural network weights and activation is a
32-bit floating-point to low-bit integers mapping process. In
this study, we study uniform, per-layer, and symmetric quan-
tization (see the classification of quantization in (Li et al.
2021d; Li, Dong, and Wang 2019; Shen et al. 2021; Li et al.
2021e)). In uniform symmetric quantization, the mapped
fixed-point integers have the same interval and are symmet-
rically distributed. The quantization function can be written



by:
q(w) = s× clip

(
⌊w
s
⌉, Nmin, Nmax

)
(1)

Here, s is the step size between two grids and Nmin, Nmax

are the minimum and maximum integer range, determined
by the bit-width b. For activation quantization, we have
Nmin = 0, Nmax = 2b − 1, while for weights quantization
we have Nmin = −2b−1, Nmax = 2b−1 − 1. Quantization
function is generally designed to minimize the quantization
error (Rastegari et al. 2016; Cai et al. 2017):

min ||ŵ −w||2F . s.t. ŵ = q(w). (2)

Generally, In PTQ one can directly get the quantized by
solving this minimization problem (for activation quantiza-
tion, a small subset of the training dataset called calibration
dataset is adopted for obtaining the statistics of the activa-
tion distribution). However, this method is not optimal in
extremely low-bit cases. A naive rounding-to-nearest cannot
even handle the 4-bit quantization. For example, in data-free
quantization (Nagel et al. 2019), the 4-bit ResNet-18 only
has ∼40% accuracy on ImageNet dataset.

Attention in CNN
Attention is a technique that mimics cognitive atten-
tion (Wikipedia 2021). The effect enhances the important
parts of the input data and fades out the rest—the thought
being that the network should devote more computing power
to that small but important part of the data. Attention is orig-
inally developed in (Vaswani et al. 2017) in the natural lan-
guage processing area. Nowadays, the attention mechanism
is also adopted in the vision model, especially the convo-
lutional network. Squeeze and excitation block (Hu, Shen,
and Sun 2018), as a representative work of using attention in
quantization neural network, dynamically decide the impor-
tance of each channel and assign a scaling factor to them. As
a result, the important channels are highlighted. Our work is
inspired by this attention mechanism. Specifically, for acti-
vation quantization in the ℓ-th layer, the MSE minimization
goal is formulated by

minEx0∈S ||x̂ℓ − xℓ||2F , (3)

where x0 is the input sample to the network and sampled
from the limited training dataset S. We can see that this
objective is an expectation minimization problem, which
means the optimal step size s must find an intermediate so-
lution that is good for every sample. However, an alternative
way is to find a dynamic step that varies along with the input
sample. In this work, we explore such a possibility and im-
prove the model quantization performance without bells and
whistles.

Methodology
We first present some empirical observations to illustrate our
motivation. First, we train a ResNet-20 (He et al. 2016) on
the CIFAR10 dataset (Krizhevsky, Nair, and Hinton). And
observe the activation distribution with different input sam-
ples. In table 1, we randomly select 6 samples in the valida-
tion dataset and record their maximum activation, 99.9 per-
centile activation, 99 percentile activation and 90 percentile

Samples Max 99.9% 99% 90%
x0
1 0.8572 0.5550 0.3423 0.1401

x0
2 0.7998 0.5061 0.3150 0.1218

x0
3 1.0333 0.4707 0.2848 0.1366

x0
4 0.8739 0.5486 0.3211 0.1380

x0
5 0.9887 0.6600 0.3914 0.1672

x0
6 0.7403 0.4534 0.2400 0.1169

Table 1: Activation distribution sample in the 5-th layer of
ResNet-20, given 6 random input samples.

m 1 3 5 10 20
Acc. 79.6% 82.5% 85.5% 86.6% 87.5%

Table 2: Accuracy comparison of 4-bit quantized ResNet-
20, given different number of step size candidates.

activation. It can be seen that the activation distribution dif-
fers among input samples. In particular, the outlier, i.e., the
high activation has a very different value. x3 has 1.03 max
activation but x0

6 only has 0.74 max activation. This differ-
ence shows that a single and fixed step size is not good for
the model quantization.

To verify this observation, we conduct a simple experi-
ment. We use the same ResNet-20 trained on the CIFAR10
dataset which has 93.2% accuracy and quantizes it to 4-
bit. With 4-bit weight only quantization, the model only has
87.5% accuracy. Furthermore, we will quantize its activation
accuracy, with traditional MSE minimized step size on the
calibration set (i.e. the 3), the accuracy drops to 84.1%. Now,
we would like to test multiple-step size. First, we get the
maximum activation value m, and then split c values equally
between [0.2m,m]. For example, say we have c = 1.0 and
m = 5, then we get 4 step size from {0.2, 0.4, 0.6, 0.8, 1.0}.
Second, we verify all these options, and we mark i-th test
sample as correctly classified as long as one of these options
has the right classification. To be more specific, we record
the accuracy of the union of all step size trials. In table 2, we
summarize the results. Note that here c = 1 means the step
size is calculated by maximum activation value, therefore its
accuracy is lower than the MSE minimized step size. We
can see that, as the number of step sizes increases, mean-
ing that a larger range is covered, the accuracy gradually
increases. With only 5 candidates, the accuracy surpasses
the MSE minimized step size. And continuing to increase
the step size, the accuracy will approach the accuracy of
the weight-only quantized model. These experiments verify
that, by choosing the right step size for each test sample, we
can eliminate the accuracy drop caused by activation quan-
tization.

We propose the dynamic step size for post-training quan-
tization. Specifically, we design a router function to predict
the optimal step size for each input sample. The schematic
view is shown in the Fig. 1. In each layer, we add a router
function σ(·) which determines the optimal step size by out-
putting a scaling factor σ(x) ∈ (0, 1). This scaling factor
is then multiplied to the maximum step size smax to gen-
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Figure 1: Method of dynamic step size for activation quanti-
zation, where each sample will generate a unique step size.

erate the step size for this layer. The router function is de-
signed as a global average pooling layer followed by two
fully-connected layers and one rectified linear unit, which
is similar to the squeeze-and-excitation channel attention in
CNN. Note that we do not use per-channel activation quan-
tization since it is inefficient in the hardware. Formally, our
activation can be written as:

x̂ℓ = smaxσ(x
ℓ)× clip

(
⌊ xℓ

smaxσ(x)
⌉, Nmin, Nmin

)
. (4)

Ideally, this router function can help us find the best step
size for each sample. However, how to learn this router
function still remains unsettled. In this paper, we propose
a two-stage algorithm for learning the router function. The
first stage is the per-layer reconstruction. Given a calibration
dataset C, we traverse each layer in the model and minimize
the output between original the full-precision network and
the quantized network, given by

min
θ,sw

||ŷℓ − yℓ||2F , (5)

where yℓ is the full-precision output at ℓ-th layer, and
the ŷ is the output from the convolution between quantized
weights and quantized activation. θ is the parameters in the
router function block and sw is the step size for weight
quantization. Moreover, it can combine other PTQ algo-
rithms like bias correction (Finkelstein, Almog, and Grob-
man 2019). The second stage is a global tuning algorithm.
Using the data from the calibration dataset, we can calculate
the KL divergence between two networks’ output, and min-
imize the divergence. Note that both two stages avoid the
usage of data labels. Our two-stage algorithm can be real-
ized by gradient descent. For rounding operation, we use the
Straight-through Estimator (Bengio, Léonard, and Courville
2013; Yin et al. 2019), which applies ∂⌊x⌉

∂x = 1 in backprop-
agation. According to the gradient calculation in (Esser et al.
2019), the gradient of σ(x) can be computed by:

∂x̂

∂σ(x)
=

(
⌊ x

smaxσ(x)
⌉ − x

smaxσ(x)

)
× smax. (6)

Note that this gradient is satisfied when the activation is not
clipped. Together with the stochastic gradient descent algo-

Algorithm 1: Dynamic Activation Step Size
Input: Full precision model, calibration dataset C.
Parameter: initialized router block parameters θ and weight
quantization step size sw
Output: Quantized model.

1: Input calibration set and get maximum activation values.
2: Stage 1: Per-layer reconstruction
3: for i in all l layers do
4: Store full-precision layer input and output.
5: for e in Total Training Iterations do
6: Compute the output the MSE loss (Eq. (5)).
7: Update θ and sw by backpropagation and SGD.
8: end for
9: end for

10: Stage 2: Global Tuning
11: for e in Total Training Iterations do
12: Compute the KL divergence loss.
13: Update all layers’ θ and sw by backpropagation and

SGD.
14: end for
15: return Quantized model with dynamic activation step

size.

rithm, we are able to learn the dynamic activation step size.
The whole procedure is described in Algorithm 1.

Experiments

In this section, we verify the effectiveness and efficiency
of our proposed method. All the experiments are run
with PyTorch package (Paszke et al. 2019). We mainly
quantize the weights and the activation on pre-trained
ResNets (He et al. 2016). We use the dataset from CI-
FAR10, CIFAR100 (Krizhevsky, Nair, and Hinton) and Im-
ageNet (Deng et al. 2009):

The ImageNet dataset consists of 1.2M training and 50K
validation images. For creating validation dataset, we ran-
domly sampled 1024 images as did in (Li et al. 2021b)
which are processed by standard augmentation used in (He
et al. 2016). We use the Pytorch official code 4 to con-
struct ResNets, and they are initialized from the released
pre-trained model. In the first stage, we use stochastic gradi-
ent descent (SGD) with the momentum of 0.9 to optimize
all parameters. The batch size is set to 32. The learning
rate is set to 10−3 followed by a cosine annealing sched-
ule (Loshchilov and Hutter 2016) for 10k iterations of ev-
ery layer’s reconstruction process. No L2 regularization is
imposed. In the second stage, we also optimize the whole
network for 10k iterations and use the same training hyper-
parameters.

CIFAR10 & CIFAR100 contain 50k training images and
10k test images for 10/100 classes. Each image is 32 × 32.
For the calibration dataset, we randomly sample 256 images
for PTQ. These images are randomly resized then cropped
and randomly flipped. Other training hyper-parameters are
the same with ImageNet experiments.



Table 3: CIFAR10 results on quantization, given different
quantization algorithms and network architecture.

Model Method Bit (W/A) Acc.
Full precision 32/32 93.2
DFQ 4/4 83.2
DFQ + Ours 4/4 85.9

ResNet-20 BRECQ 4/4 90.4
BRECQ + Ours 4/4 92.2
BRECQ 4/2 79.9
BRECQ + Ours 4/2 86.3
Full precision 32/32 95.4
DFQ 4/4 81.2

ResNet-110 DFQ + Ours 4/4 87.0
BRECQ 4/4 93.1
BRECQ + Ours 4/4 94.0

Table 4: CIFAR100 results on quantization, given different
quantization algorithms and network architecture.

Model Method Bit (W/A) Acc.
Full precision 32/32 74.0
DFQ 4/4 68.6
DFQ + Ours 4/4 70.7

ResNet-20 BRECQ 4/4 72.4
BRECQ + Ours 4/4 72.8
BRECQ 4/2 61.0
BRECQ + Ours 4/2 69.9
Full precision 32/32 77.1
DFQ 4/4 70.2

ResNet-110 DFQ + Ours 4/4 73.8
BRECQ 4/4 74.7
BRECQ + Ours 4/4 76.0

Results are CIFAR10 & CIFAR100
We compare our algorithm with data-free quantiza-
tion (Nagel et al. 2019)1 and block reconstruction quanti-
zation (Li et al. 2021b)2. For bitwidth we mainly test 4-bit
weights and 4- or 2-bit activation. We summarize the re-
sults on CIFAR10 in table 3 and the results on CIFAR100
in table 4. We can find that DFQ is unable to handle 4-bit
quantization, with a 7.3% accuracy drop on CIFAR10. Our
method can increase the accuracy by 2.7%. It is worthwhile
to note that our method improves only activation quantiza-
tion. Therefore, when we apply BRECQ which adjusts the
weights during calibration, we can still improve 1.8% accu-
racy. We also try ResNet-110, a much deeper network than
ResNet-20. In this network, the activation quantization drops
more accuracy. For example, DFQ achieves higher quantiza-
tion accuracy on ResNet-20 but the full-precision of ResNet-
20 is lower. In this case, our method exhibits the ability
to recover the activation accuracy. In addition, we examine

1https://github.com/jakc4103/DFQ
2https://github.com/yhhhli/BRECQ

Table 5: ImageNet results on quantization, given different
quantization algorithms and network architecture.

Model Method Bit (W/A) Acc.
Full precision 32/32 71.0
BRECQ 4/4 69.60

ResNet-18 BRECQ + Ours 4/4 70.21
BRECQ 4/2 59.65
BRECQ + Ours 4/2 64.23
Full precision 32/32 72.49

MobileNetV2 BRECQ 4/4 66.57
BRECQ + Ours 4/4 69.54
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Figure 2: The dynamics of our router function.

a more challenging case, the 2-bit activation quantization.
Here, traditional activation quantization produces a signifi-
cantly large gap. Our method, combined with BRECQ, can
improve 6.4% accuracy.

ImageNet Results
We verify our method on both ResNet-18 as well as Mo-
bileNetV2 (Sandler et al. 2018). The results are summa-
rized in the table 5. We mainly compare BRECQ in this
section since the DFQ fails to achieve a comparable perfor-
mance. For 4-bit quantization of ResNet-18, our method up-
lifts 0.61% accuracy, with only 0.8% accuracy gap to full
precision model. Following the experiments in CIFAR10,
we test 4/2 bits model, our method achieves a 4.6% accuracy
boost. Finally, we verify the algorithm on the MobileNetV2,
which is notoriously hard to get quantized. We show that
our method can, for the first time, achieve QAT-level accu-
racy (as a comparison, Quantization Aware Training (QAT)
only achieves 61.4%, 64.8%, 71.5% in Choi et al. (2018);
Gong et al. (2019); Park and Yoo (2020), respectively. )

Dynamics Visualization
In this section, we visualize the distribution of σ(x) over
10k test dataset. The result is presented in Fig. 2. We can see
that the majority of the images choose 0.6 as their optimal



scaling factor. However, there are also small enough values
like 0.3 and large enough values like 0.9.

Conclusion
In this work, we noticed that the activation distribution
would change with different input samples. Hence, we ar-
gued that keeping a fixed activation step size for PTQ maybe
not be a good idea. Then the dynamic activation step size
was proposed. Specifically, we appointed a router function
for every layer to generate a suitable step size on basis of in-
coming activation and designed a two-stage training method
to learn the function. Extensive experiments showed that our
method consistently achieved better performance than the
other SOTA.
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