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Abstract

The softmax function is widely used in artificial neural net-
works for the multiclass classification problems, where the
softmax transformation enforces the output to be positive and
sum to one, and the corresponding loss function allows to use
maximum likelihood principle to optimize the model. How-
ever, softmax leaves a large margin for loss function to conduct
optimizing operation when it comes to high-dimensional clas-
sification, which results in low-performance to some extent.
In this paper, we provide an empirical study on a simple and
concise softmax variant, namely sparse-softmax, to alleviate
the problem that occurred in traditional softmax in terms of
high-dimensional classification problems. We evaluate our
approach in several interdisciplinary tasks, the experimental
results show that sparse-softmax is simpler, faster, and pro-
duces better results than the baseline models.

The Softmax transformation is widely used in artificial neu-
ral networks for multi-class classification,multi-label classifi-
cation and attention mechanisms where it typically appears as
the last layer. However, when it comes to classification prob-
lems with high dimensional outputs(empirically more than
100 categories), the standard softmax and backpropagation
do not take advantage of the sparsity of the categories and,
as a result, softmax converges slowly on high-dimensional
classification tasks. The softmax function has often been scru-
tinized in search of finding a better alternative to tackle the
problem aforementioned. Specifically, the first direction is
sampling methods approximations, which compute a frac-
tion of the output’s dimensions (Gutmann and Hyvärinen
2010; Mnih and Kavukcuoglu 2013; Mikolov et al. 2013;
Shrivastava and Li 2014). The second direction is modeling
high dimensional classification as a hierarchical classification
task, where it modifies the output softmax layer by introduc-
ing heuristical-based tree (Mikolov et al. 2013; Morin and
Bengio 2005).

Furthermore, (Vincent, De Brébisson, and Bouthillier
2015) explore the spherical loss family where they propose
an alternative softmax that has log-softmax loss as one of
its members. (de Brébisson and Vincent 2015) further work
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on this family of loss functions and propose log-Taylor soft-
max as a superior alternative than others, including original
log-softmax loss. (Liu et al. 2016) propose large-margin soft-
max (LM-softmax) that tries to increase inter-class separation
and decrease intra-class separation. This approach is further
investigated by (Liang et al. 2017), where they propose soft-
margin softmax (SM-softmax) that provides a ner control
over the inter-class separation compared to LM-softmax.

In this work, we propose a simple and scalable alternative
softmax namely Sparse-softmax, which specifically takes an
effect on the high-dimensional classification problems. We
first describe precisely our approach and explain theoreti-
cally why it is effective. Then we evaluate our approach on
the interdisciplinary tasks including three NLP tasks: text
classification (Yang et al. 2019; Howard and Ruder 2018),
abstractive summarization (Al-Sabahi, Zuping, and Nadher
2018; Nallapati et al. 2016), question generation (Kundu and
Ng 2018; Tay et al. 2018), as well as an image classification
in Cifar-100 dataset. Experimental results indicate that our
approach outperforms the baseline models. Our contribution
can be summarized as the following:
• We introduce a simple softmax alternative called sparse-

softmax, and its corresponding loss function during train-
ing.

• We explain the reason in-depth why sparse-softmax ad-
vances normal softmax in high-dimensional classification
problem.

• We design interdisciplinary experiments to exhaustively
analyse our model, where the experimental result verifies
our model effectiveness.

Methods
In this section, we provide a brief overview of the softmax
transformation and cross-entropy loss function in section .
Then, We propose our sparse-softmax and a modified loss
function in section , furthermore, we elaborate on the in-
ner mechanism of the advance of our approach in high-
dimensional classification problems.

Background
Definition. We denote the d-dimensional simplex by ∆d =
{p ∈ Rd : p ⩾ 0, ∥p∥1 = 1}, where the set of vectors



represents probability distributions over d categories. Empiri-
cally, we consider a task as a high-dimensional classification
problem if d ⩾ 100.

Softmax. We focus on the transformations that convert
vectors in Rd to probability distributions in ∆d. One of the
most well-studied one is the softmax function that converts
a vector of weights to a posterior label probabilities. The
softmax function is defined as following:

pi = Softmax(z)i =
ezi∑d
j=1 e

zj

(1)

where the exponential function is executed on each element
zi of the input vector z and the output values are normalized
by dividing by the sum of the entire exponentials. The nor-
malization operation let each element in the output vector pi
sum up to 1.

Cross-entropy loss function. To derive the loss function
for the softmax function we start out from the likelihood
function that a given set of parameters of the model can
result in the prediction of the correct class of each input
sample, as in the derivation for the logistic loss function. The
maximization of this likelihood can be written as:

argmax
θ

L(θ|t, z) (2)

Maximizing this likelihood can also be done by minimiz-
ing the negative log-likelihood:

Lce = − log pt =
∑
i

ezi − zt (3)

where t denotes target category and z is the logits deriving
from the output of softmax layer.

Sparse-softmax Algorithm
Approach. A limitation of the conventional softmax function
is that the resulting probability distribution always has full
support across each zi, in another word, softmaxi(z) ̸= 0
for every zi. This is a weakness when it comes to high-
dimensional classification problems where a sparse probabil-
ity distribution is desired.

In this paper, we propose an alternative transformation,
which we call sparse-softmax, to tackle the limitation afore-
mentioned. The idea of sparse-softmax is intuitive and con-
cise: we manually set up a hyperparameter k, then we only
select the maximum k input values as a vector Ωk ∈ Rk

to pass through the exponential normalized function, while
others are masked as 0:

Sparse Softmax(z)i =

{
ezi∑

j∈Ωk
ezj , zi ∈ Ωk,

0, zi /∈ Ωk

(4)

where Ωk is the set of top-k maximum indices of zi. Ac-
cordingly, the cross entropy loss function for sparse-softmax
Lsparse is modified as:

Lsparse = log
∑
i∈Ωk

ezi − zt (5)

where zt is the logit of the targeted category.
Theoretical analysis In this part, we theoretically explain

why our sparse-softmax is effective on high-dimensional
classification tasks. As we elaborated in Equation 2 and 3, the
conventional cross-entropy loss function can also be written
as the following:

Lce = log(1 +
∑
i ̸=t

ezi−zt) (6)

where t is the targeted category, z is the logits. Presumably,
we classify the current sample correctly, that is, zmax = zt.
Therefore, we can derive the inequality:

log(1 +
∑
i ̸=t

ezi−zmax) ≥ log(1 +
∑
i ̸=t

ezmin−zmax)

= log(1 + (n− 1)ezmin−zmax)
(7)

where n denotes the number of categories. Then we set up
a bound ϵ for cross entropy loss function. We are aware of
the necessary condition for cross entropy to be less than or
equal to ϵ is:

log(1 + (n− 1)ezmin−zmax) ≤ ϵ (8)

so we solve the equation 8:

zmin − zmax ≥ log(n− 1)− log(eϵ − 1) (9)

As an example:

ϵ = log 2 ≈ 0.69 (10)

In this case, we are aware that:

log(eϵ − 1) = 0 (11)

therefore,
zmax − zmin ≥ log(n− 1) (12)

In another word, to make sore the cross entropy loss can
be reduced to 0.69, the difference between maximum logit
zmax and minimum logit zmin must be greater or equal
to log(n− 1). However, when it comes to high-dimensional
classification problems where n is much greater, log(n−1) is
a relatively massive but unnecessary margin for loss function.

Therefore, in terms of a classification problem, although
we expect that logit of the targeted category is greater than
any other non-targeted category, it can result in overfitting
problem since conventional cross entropy loss tends to re-
duce this margin to a large extend, in which it makes the
model overlearn the category distribution. However, the mar-
gin log(n − 1) is relatively small in sparse-softmax as we
diminish the number of category n to hyperparameter k, such
that alleviate the overfitting problem caused by conventional
softmax.

Experiments
In this section, we compare our sparse-softmax with conven-
tional softmax on several tasks: text classification, abstractive
summarization, question generation in the natural language
processing field, as well as a image classification task in the



Table 1: Experimental results in text classification task

WOS-46985 OOS-EVAL RCV1-V2 IFLYTEK
MACRO F1 MICRO F1 MACRO F1 MICRO F1 MACRO F1 MICRO F1 MACRO F1 MICRO F1

SOFTMAX 82.15 82.65 95.53 95.19 62.04 80.52 43.29 59.5
SPARSE(K=1) 82.23 82.77 95.59 95.52 62.09 80.72 43.54 59.8

SPARSE(K=10) 82.71 82.95 95.86 95.45 62.64 81.40 43.37 59.1
SPARSE(K=20) 83.31 83.50 96.08 95.88 63.17 81.52 43.85 60.7
SPARSE(K=50) 82.77 82.98 95.66 95.32 62.21 81.16 43.97 60.2

SPARSE(K=100) 81.96 82.47 95.71 95.35 21.89 46.46 44.25 60.1

computer vision field. Our goal is not to achieve the state-of-
the-art on each task but to observe the effect of replacing the
original softmax with our sparse-softmax. In the subsection
below, we will provide detailed experimental results on the
downstream task , an efficiency analysis in section and the
model performance under different settings of hyperparame-
ter k in section .

Text Classification
Datasets. Text classification is the task of assigning an
appropriate category to a given sentence or document. The
categories depend on the chosen dataset and can range from
topics. In our experiment, we chose 4 different datasets for
evaluation, which are all beyond 100 categories. Among them,
Web of Science(WOS-46985) dataset 1 contains 46,985 docu-
ments with 134 categories which include 7 parents categories.
OOS-eval dataset 2 is the benchmark for evaluating the 150
types of user intents classification system in the presence
of out-of-scope queries for the dialog system. Reuters Cor-
pus Volume I (RCV1-v2) 3 consists of more than 800,000
news agency stories manually classified by Reuters Ltd for
research purposes, each of which is assigned multiple topics.
The total number of topics is 103. IFLYTEK 4 is a Chinese
long text classification dataset, which contains more than
17,000 long text annotated data including various applica-
tion topics related to daily life, where it has a total of 119
categories. The statistics of these datasets are presented in
Table 2.

Experimental Settings. Among on these text classifica-
tion datasets, except for the Chinese dataset iflytek that we
use pre-trained model Nezha base (Wei et al. 2019) as our
baseline, we all use BERT base (Devlin et al. 2018) as our
baseline model on the other English datasets. According to
the text length distribution of different datasets, as well as the
maximum word length limited by Bert, we set the hyperpa-
rameters as shown in the following table 4. It is worth noting
that since the text length of the WOS-46985 dataset is gener-
ally too long, we adopt the way of head+tail to truncate the
information for the text beyond maximum length. Moreover,
as the RCV1-V2 dataset contains a large scale of samples,
we set epoch is 5 for accelerating the training process, while
the rest of the datasets iterate over 20 epochs.

1https://data.mendeley.com/datasets/9rw3vkcfy4/6
2https://github.com/clinc/oos-eval
3https://archive.ics.uci.edu/ml/datasets/Reuter
4https://global.xfyun.cn/

Results. We compare the experimental results of both
softmax and sparse-softmax with the setting of K = 1, 10, 20,
50, 100 in four datasets. Following (Johnson and Zhang 2016;
Howard and Ruder 2018), we adopt macro F1 and mirco F1
score for evaluation and get the following results shown
in Table 1. We can observe sparse-softmax all outperforms
softmax in four text classification datasets. Empirically, when
the number of categories is roughly 100 in certain datasets
, the setting of hyperparameter K as 20 tends to achieve
the best performance. It is worth mentioning that the model
performance drops dramatically when we set k as 100 in
RCV1-V2 dataset, since the number of categories in the
RCV1-V2 dataset is 103 , we found that the model does not
converge properly because of the gradient propagation of
the remaining categories in the iterative process when the
probability distribution is truncated.

Efficiency Analysis

The plots for training loss upon mini-batches for WoS-46985,
OOS-eval, RCV1-v2 and IFLYTEK are given in Figure 1.
It can be seen that compared with the traditional softmax,
the loss function of sparse-softmax drops to a relatively low
level while using fewer epochs when the parameters were
consistent with softmax, which proves that sparse-softmax
can converge faster in the high-dimensional classification
tasks. Meanwhile, it may be pertinent to note that in Fig-
ure 1, we see fluctuation in the training loss for the softmax
function, whereas the plot is comparatively smoother for
sparse-softmax, which also indicates our approach can be
less likely perturbed and more likely to converge.

Robustness to hyperparameter k

In this section, we show that our procedure is stable in its
hyperparameter k. The theoretical results suggest that a wide
range of k can give us statistical consistent guarantees of
performance improvement against traditional softmax. Such
robustness in hyperparameter is highly desirable since opti-
mal tuning is not always feasible under certain circumstances,
especially when no sufficient validation set or computational
resources are available.

Empirically, when the number of categories is approxi-
mately 100 in the classification tasks , it achieves the state-of-
the-art results when k is selected as 20. As shown in Figure 2,
k = 20 achieves the best micro F1 scores, which are 60.7%
and 96.1% in iflytek, oos eval dataset respectively.



Table 2: Statistics of datasets in text classification task.

WOS-46985 OOS-EVAL RCV1-V2 IFLYTEK
TRAINING SET
SAMPLES 32889 15100 775220 12133
CATEGORIES 134 150 103 119
AVERAGE LENGTH 99 8.3 120.2 289.0
MAXIMUM LENGTH 998 28.0 500.0 4282.0
DEVELOPMENT SET
SAMPLES 9444 3100 21510 2599
CATEGORIES 134 150 103 119
AVERAGE LENGTH 200.3 8.3 120.1 289.8
MAXIMUM LENGTH 1262 24.0 499.0 1755
TEST SET
SAMPLES 4652 5500 1191 2599
CATEGORIES 134 150 103 119
AVERAGE LENGTH 197.9 8.3 116.4 289.8
MAXIMUM LENGTH 691 25.0 499.0 1755

Table 3: Experimental results on SQuAD 1.1 dataset.

BLEU-1 BLEU-2 BLEU-3 BLEU-4

BASELINE 51.49% 36.19% 27.33% 21.20%
SPARSE-SOFTMAX 52.39% 36.81% 28.13% 22.02%
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Figure 1: Loss curve in text classification task
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Figure 2: Micro F1 curve in text classification task

Auxiliary Experiments
To verify that sparse-softmax is adaptive across different
high-dimensional tasks, we present experiments where we

adopt sparse-softmax to the baseline models and compare the
model performance respectively. The details are listed in the



Table 4: Experimental settings in text classification task

DATASET MAX LENGTH BATCH SIZE
WOS-46985 360 16
OOS-EVAL 64 256
RCV1-V2 512 16
IFLYTEK 256 24

following subsections including abstractive summarisation
and question answering tasks in the natural language pro-
cessing field, as well as image classification in the computer
vision field.

Abstractive Summarisation

Automatic text summarization produces a concise and fluent
summary conveying the key information in the input (e.g., a
news article). We focus on abstractive summarization, a gen-
eration task where the summary is not constrained to reuse
the phrases or sentences in the input text. We use Gigaword-
10k 5 dataset for evaluation. We also use UNILM (Dong et al.
2019) as our baseline model and fine-tune the model on train-
ing set for 30 epochs. The masking probability is 0.7. We also
use label smoothing (Müller, Kornblith, and Hinton 2019)
with a rate of 0.1. For Gigaword, we set the batch size to 64,
and maximum length to 256. During decoding, we experi-
ment two different beam sizes: 1 and 5, respectively. We also
fine-tune UNILM as a sequence-to-sequence model in our
task. Due to the massive scale of the input vocabulary, the
model needs to classify over 25,731 categories at each time
step in the decoding stage if none of the post-processing steps
are involved. Even if we mask all the tokens not appearing in
the input sentence, the model still needs to classify over 256
categories as we set up the input maximum length to 256.

We use the F1 version of ROUGE of that in UNILM (Dong
et al. 2019) as the evaluation metric for our dataset. In Ta-
ble 5, we compare the model performance of raw baseline
with adding our sparse-softmax, we can notice that sparse-
softmax outperform baseline by 0.67% ROUGE-1 and 0.79%
ROUGE-2 when it sets beam size = 1. In terms of beam size
= 5, we mask the entire probability distributions except for
top 5 ones, and our model also outperforms 0.28% ROUGE-1
and 0.55% ROUGE-2 respectively.

Table 5: Experimental results on Gigaword-10k dataset

beam size = 1 ROUGE-1 ROUGE-2
Unilm + softmax 32.23% 13.34%
Unilm + sparse-softmax 32.90% 14.13%

beam size = 5 ROUGE-1 ROUGE-2
Unilm + softmax 32.82% 13.93%
Unilm + sparse-softmax 33.10% 14.48%

5https://paperswithcode.com/sota/text-summarization-on-
gigaword-10k

Question Answering

We also conduct experiments for the answer-aware question
generation task (Chaplot et al. 2018; Lai et al. 2017). Given
an input passage and an answer span, our goal is to generate
a question that asks for the answer. We conduct evaluation
on The SQuAD 1.1 dataset 6. The question generation task
is also formulated as a sequence-to-sequence problem which
means the model needs to classify over the entire vocabulary
as same as abstractive summarisation task above.

We also use UNILM as our baseline and fine-tune it on
the training set for 10 epochs. We set the batch size to 32,
masking probability to 0.7, and learning rate to 2e-5. The
rate of label smoothing is 0.1. We set beam size = 1, which is
aligned with the baseline model. During decoding, we trun-
cate the input to 464 tokens by selecting a passage chunk
that contains the answer. We use BLEU-4 as evaluation met-
rics (Dong et al. 2019). The result is showing in Table 3,
by adding the sparse-softmax, our model outperforms the
baseline model by 0.90%, 0.62%, 0.80%, 0.82% in terms of
BLEU-1, BLEU-2, BLEU-3, BLEU-4 respectively.

Using pre-trained models

Pretrained model provides more informative initialized pa-
rameters to accelerate the convergence speed of the model on
specific tasks. However, it also suffers more overfitting prob-
lem under the same circumstances as non-pretrained models.
As elaborated in Section , we infer that sparse-softmax is
capable of alleviating overlearned problem, since it can di-
minish the gap between maximum logit and minimum logit
where it is used to measure the margin of cross entropy loss
function. Intuitively, we assume applying sparse-softmax to
pretrained model is more effective as the overlearned prob-
lem is more obvious in the pretrained models. To verify our
speculation and the generalization capability of our approach,
we conduct the experiment in an image classification task to
verify this hypothesis. We adopt Cifar-100 7 as our dataset
and Densenet 201 (Huang et al. 2017) as our baseline mod-
els. We set epoch is 200, batch size is 62, and k is 20 for
sparse-softmax in the training stage. The result is shown in
Table 6, there was a slight performance degradation after
using Densenet + Sparse-softmax.

As we assume that sparse-softmax is only effective un-
der the framework of pre-trained models, we carry out the
same experiment with InceptionV3 (Szegedy et al. 2016),
which is pre-trained on imageNet dataset 8. After deploy the
pre-training framework, our proposed sparse-softmax shows
better performance, which verify the hypothesis that sparse-
softmax is more suitable for pre-trained model structures.

6https://datarepository.wolframcloud.com/resources/SQuAD-
v1.1

7https://www.cs.toronto.edu/ kriz/cifar.html
8http://www.image-net.org/



Table 6: Experimental results on image classification tasks

MODEL TOP1 ACC
DENSENET(RAW) 0.762
DENSENET(SPARSE-SOFTMAX) 0.737
INCEPTIONV3(FINE TUNED) 0.771
INCEPTIONV3(SPARSE-SOFTMAX) 0.778

Conclusion
In this paper, we propose sparse-softmax, which is an alter-
native of traditional softmax but achieves sparse probability
distributions in the output. Experimental results on various
tasks verifies that sparse-softmax can convex faster than con-
ventional softmax and gain better model performance in high-
dimensional classification tasks. Experiments on the image
classification task suggest that our approach is adaptable to
different domains under pre-trained model structure.
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