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Abstract

Physics Informed Neural Networks has been quite suc-
cessful in modelling the complex nature of fluid flow. Com-
putational Fluid Dynamics using parallel processing algo-
rithms on GPUs have considerably reduced the time to solve
the Navier Stokes Equations. CFD based approaches uses
approximates to make the modelling easy but it comes at
the cost of decrease in accuracy. In this paper, we propose
an attention based network architecture named AA-PINN
to model PDEs behind fluid flow. We use a combination of
channel and spatial attention module. We propose a novel
loss function which is more robust in handling the initial as
well as boundary conditions imposed. Using evaluation met-
rics like RMSE, divergence and thermal kinetic energy, our
network outperforms previous PINNs for modelling Navier
Stokes and Burgers Equation.

1. Introduction
Computational Fluid Dynamics (CFD) has become the

core technology behind every fluid simulation. Deep learn-
ing uses powerful information-processing algorithms for
modeling, optimization, and control of fluids. Fluid me-
chanics has been traditionally concerned with big data, thus
making deep learning an obvious choice in modelling the
complexity. Neural Networks of late has been quite success-
ful in understanding, predicting, optimizing, and controlling
fluid flows. Some of the more complex problems in fluid
mechanics, such as reduced-order modeling and shape op-
timization can be modelled as optimization and regression
tasks.

Neural Network has proven to improve optimization per-
formance and reduce convergence time drastically. Neu-
ral network is also used for turbulence modelling, dimen-
sionality reduction, identifying low and high dimensional
manifolds and understanding continuous and discrete flow
regimes. Deep learning algorithms are able to take into ac-
count inherent complexity of the problem thus optimizing
for the performance, robustness or convergence for complex

tasks. It helps in providing a general purpose framework for
interpretability, generalizability and explainability of the re-
sults achieved. Understanding the physics behind fluid flows
is a complex problem which can be solved using neural
networks by feeding lots of training data.

2. Related Work
Neural network to solve Reynolds Averaged Navier

Stokes Equation was proposed by (Ling et al., 2016). The
Reynolds stress term was modelled using DNS equation by
(Wang et al., 2017). Neural network was used to model
turbulent flows using Large Eddy simulation (Zhou et al.,
2019). A convolutional neural network was used to model
the velocity field over a cylinder (Jin et al., 2018). (Wu et al.,
2020) proposed a similar CNN based method to model the
unsteady flow in arbitrary fluid regimes. A thorough study of
data driven methods using machine learning approaches for
modelling the turbulence was studied by (Duraisamy et al.,
2019).

(Brunton et al., 2020) also did a comprehensive study of
machine learning approaches for modelling different kind of
problems in fluid mechanics. (Raissi et al., 2017) proposed
physics informed neural networks for solving nonlinear par-
tial differential equations using neural network. This work
was further improved in (Raissi et al., 2019). The theoretical
exact solution of the 3d Navier Stokes equation was shown
by (Ethier and Steinman, 1994). Deep feedforward neural
networks was used (Lui and Wolf, 2019) for modelling com-
plex flow regimes. CNN were used for making faster fluid
simulation (Tompson et al., 2017).

A novel neural network was proposed for solving the func-
tion approximation and inverse PDE problems (Meng and
Karniadakis, 2020). (Khoo et al., 2021) used neural network
for solving parametric PDEs. (Meng et al., 2020) proposed a
neural network for solving unsteady PDEs. Bayesian neural
network was used to quantify the uncertainty while solving
PDEs (Yang et al., 2021). Data driven approaches for solv-
ing PDEs was proposed by (Long et al., 2018) and (Long
et al., 2019). c(Sirignano et al., 2020) used neural network
for solving PDEs in the context of large-eddy simulation.
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(Bar and Sochen, 2019) was one of the first works to use
unsupervised learning for solving PDEs.

(Thuerey et al., 2020) proposed a deep learning ap-
proach for solving Reynolds-averaged Navier-Stokes equa-
tion around airfoils. Another approach for solving PDEs us-
ing deep learning was used (Miyanawala and Jaiman, 2017)
in the context of unsteady wake flow dynamics. A compre-
hensive study of deep learning approaches for modelling and
solving fluid mechanics problem was done by (Kutz, 2017).
(Ranade et al., 2021) proposed a deep learning based solver
for Navier–Stokes equations using finite volume discretiza-
tion. Neural networks was used for solving incompressible
Navier-Stokes equations (Jin et al., 2021). A method for
predicting turbulent flows using deep learning was proposed
by (Wang et al., 2020).

Our main contributions can be summarized as:
• A novel network architecture combining channel and

spatial attention mechanism is used for modelling the inher-
ent complexity in fluid flow problems.

• We train and test our network using a more robust
loss function for solve PDEs behind incompressible Navier
Stokes and Burgers Equation.

• Our network achieves better results than previous PINNs
using commonly used evaluation metrics while still running
at good enough speed.

3. Background

3.1. Navier Stokes Equation

The incompressible transient two dimensional Navier-
Stokes equations for mass and momentum conservation are
written as defined in the below set of equations:

∇ · u = 0 (1)

ux
∂ux
∂x

+ uy
∂ux
∂y

= −1

ρ

∂p

∂x
+ ν∇2ux + gx (2)

ux
∂uy
∂x

+ uy
∂uy
∂y

= −1

ρ

∂p

∂y
+ ν∇2uy + gy (3)

in which u is the velocity field (with x and y components
for 2 dimensional flows). A non-uniform steady-state flow
condition is assumed, hence the accumulation term (time t
dependence term) is dropped. Here g represents the gravita-
tional acceleration and µ the dynamic viscosity of the fluid.
The terms on the left-hand side of these equations represents
the convective transport, whereas the terms on the right-hand
side represents the pressure coupling and diffusive transport.

3.2. Momentum Equations

When the difference operators are expanded using uni-
form grid spacing h and time step k results in:

ui,j −
kν

h2
(ui−1,j + ui,j−1 − 4ui,j +ui,j+1+

ui+1,j +
k

h

(
ūni+1,j ūi+1,j − ūni,j ūi,j

)
+
k

h

(
v̄ni,j ũi,j−

v̄ni,j−1ũi,j−1 = uni,j −
k

h
(pi+1,j − pi,j)

(4)

Where variables without superscripts denote advanced
time level results to be computed. Using the formulas of the
averages and collecting the terms results in equation below:

−A1ui−1,j −A2ui,j−1 +A3ui,j −A4ui,j+1−

A5ui+1,j = bi,j −
k

h
(pi+1,j − pi,j) (5)

The various coefficients in the above equation are given
using the set of equations as follows:
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k

h

(
ν

h
+

1

2
ūni,j

)
(6)
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(
ν

h
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1

2
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(7)
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kν

h2
+

k

2h
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)
(8)
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(
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h
− 1

2
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)
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A5 =
k

h

(
ν

h
− 1

2
ūni+1,j

)
(10)

It is to be noted that in the continuous equations, we
ignored effects of correction quantities in advective and dif-
fusive terms. The u-component velocity correction can be
written in the form as defined in Equation below:

u′i,j =
k

A3h

(
p′i,j − p′i+1,j

)
(11)

We now present analogous results for the y-momentum
equation. The v-component velocity correction can be writ-
ten in the form as defined in Equation below:

v′i,j =
k

B3h

(
p′i,j − p′i,j+1

)
(12)
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3.3. Pressure Poisson Equation

By substituting the velocity corrections into the discrete
continuity equation for grid cell (i, j) results in:

ui,j − ui−1,j
hx

+
vi,j − vi,j−1

hy
= 0 (13)

After substituting the decomposed velocity components,
the above equation can be written as:

(u∗ + u′)i,j − (u∗ + u′)i−1,j
hx

+

(v∗ + v′)i,j − (v∗ + v′)i,j−1
hy

= 0 (14)

For simplicitiy, we set hx = hy = h, and rewrite this as:

− 1
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1
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p′i,j−1 +

(
1

A3,i,j
+

1

A3,i−1,j
+

1
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+

1

B3,i,j−1
p′i,j −

1

B3,i,j
p′i,j+1−

1

A3,i,j
p′i+1,j = −h

2

k
D∗i,j

(15)

It can alternatively written in a more compact form similar
to that used for the momentum equations:

C1p
′
i−1,j+C2p

′
i,j−1+C3p

′
i,j+C4p

′
i,j+1+C5p

′
i+1,j = d∗i,j

(16)
The various coefficients in the above equation is defined

as follows:

C1 ≡ 1
A3,i−1,j

, C2 ≡ 1
B3,i,j−1

,

C3 ≡ −
(

1
A3,i,j

+ 1
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+ 1
B3,i,j

+ 1
B3,i,j−1

)
C4 ≡ 1

B3,i,j
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A3,i,j
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k D
∗
i,j

(17)

3.4. Burger’s Equation

In one space dimension, the Burger’s equation along with
Dirichlet boundary conditions is defined using the below set
of equations:

ut + uux − (0.01/π)uxx = 0, x ∈ [−1, 1], t ∈ [0, 1]
u(0, x) = − sin(πx)
u(t,−1) = u(t, 1) = 0

(18)

Here, tiu, x
i
u, ui Nu i=1 denotes the initial and boundary

training data on u(t, x) and tif , x
i
f Nf i=1 denotes the col-

locations points for f(t, x). The loss MSEu corresponds
to the initial and boundary data while MSEf enforces the
structure used by equation at a finite set of collocation points.

4. Method
4.1. Spatial Attention Module

The spatial attention module is used for capturing the spa-
tial dependencies of the feature maps. The spatial attention
(SA) module used in our network is defined below:

fSA(x) = fsigmoid (W2 (fReLU (W1(x)))) (19)

where W1 and W2 denotes the first and second 1 × 1
convolution layer respectively, x denotes the input data,
fSigmoid denotes the sigmoid function, fReLU denotes the
ReLu activation function.

The spatial attention module used in this work is shown
in Figure 1:

Figure 1. Details of our spatial attention module
.

4.2. Channel Attention Module

The channel attention module is used for extracting high
level multi-scale semantic information. The channel atten-
tion (CA) module used in our network is defined below:

fCA(x) = fsigmoid(W2(fReLU (W1f
1
AvgPool(x)))) (20)

where W1 and W2 denotes the first and second 1× 1 con-
volution layer, x denotes the input data. f1AvgPool denotes
the global average pooling function, fSigmoid denotes the
Sigmoid function, fReLU denotes ReLU activation function.

The channel attention module used in this work is shown
in Figure 2:

4.3. Network Architecture

We use deep convolutional neural network in this work.
The input is the spatial and temporal co-ordinates of the
points in the fluid flow domain. This information is propa-
gated to three Residual blocks sequentially. In between the
blocks, channel attention module is used to weight the use-
fulness of important features and spatial attention module is

3



Figure 2. Details of our channel attention module
.

used for modelling the inter-spatial relationship of features.
Fusion operator is used to merge the individual features. The
output is the spatio-temporal pressure and velocity fields
predicted. The complete network architecture used in this
work is shown in Figure 3:

4.4. Loss Functions

The MSE loss function is used for both the X and Y
components of momentum equation which is defined as:

MSEu =
1

Nu

Nu∑
i=1

∣∣u (tiu, xiu)− ui∣∣2 (21)

MSEf =
1

Nf

Nf∑
i=1

∣∣f (tif , xif)∣∣2 (22)

The shared parameters between the neural networks
u(t, x) and f(t, x) can be learned by minimizing the mean
squared error loss as defined using in the equation below:

MSEt = αMSEu + βMSEf (23)

The weighting coefficients α and β are used to balance
different terms of the loss function and accelerate conver-
gence in the training process. The individual loss function
terms Le, Lb and Li represent loss function components
corresponding to the residual of the Navier-Stokes equations,
the boundary conditions, and the initial conditions, respec-
tively. The loss function is defined using the set of equations
below:

Le =
1

Ne

4∑
i=1

Ne∑
n=1

|enV Pi|
2 (24)

Lb =
1

Nb

Nb∑
n=1

|un − unb |
2 (25)

Li =
1

Ni

Ni∑
n=1

|un − uni |
2 (26)

Where Nb, Ni and Ne denote the number of training data
for different terms. The above 3 terms can be combined to
give:

Lt = γLe + δLb + ρLi (27)

The weighting coefficients γ, δ and ρ are used to balance
different terms of the loss function and accelerate conver-
gence in the training process. The complete loss function for
training the parameters of our network is defined as follows:

Lfinal = MSEt + Lt (28)

4.5. Optimization Details

For a general gradient descent algorithm, the iterative for-
mulation of the parameters of our network can be expressed
as:

θ(k+1) = θ(k) − ηγ∇θLe − ηδ∇θLb−
ηρ∇θLi − ηα∇θMSEu − ηβ∇θMSEf (29)

where θ denotes the parameters of the neural network,
namely the weights of all the layers, k is the iteration step,
and η is the learning rate.

4.6. Evaluation Metrics

Root Mean Square Error (RMSE) is the most popularly
used metric for quantifying the prediction performance. The
downside of using it is that it only measures indivdual pixel
differences. There is a need to check whether the predictions
are physically meaningful and preserve desired physical
quantities, such as Turbulence Kinetic Energy and Diver-
gence. In this work, we use following metrics for evaluation.

1. Root Mean Square Error: We calculate the RMSE
of all predicted values from the ground truth for each pixel.

2. Divergence: We study about incompressible turbulent
flows in this work, which means the divergence, δw, at each
pixel should be zero. We use the average of absolute diver-
gence over all pixels at each prediction step as an additional
evaluation metric.

3. Turbulence Kinetic Energy: In fluid dynamics, tur-
bulence kinetic energy is the mean kinetic energy per unit
mass associated with eddies in turbulent flow. Physically,
the turbulence kinetic energy is characterised by measured
root mean square velocity fluctuations as defined by:

(
(u′)

2
+ (v′)

2
)
/2, (u′)

2
=

1

T

T∑
t=0

(u(t)− ū)2 (30)

where t is the time step. We calculate the turbulence
kinetic energy for each predicted sample of 100 velocity
fields.
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Figure 3. Illustration of our network architecture. A residual block denotes convolution, max pooling, relu activation function and batch
normalization layer sequentially; CA and SA denotes channel and spatial attention module respectively; x denotes fusion operator.

4.7. Implementation Details

An adaptive optimization algorithm, Adam (Kingma and
Ba, 2014), is used to optimize the loss function. The parame-
ters of the neural networks are randomly initialized using the
Xavier intitalization scheme. We simulate turbulent channel
flow at Reτ = 9.99× 102 using our network. The time step
value of 0.005 is used for evaluating the residuals our net-
work. We feed the training data using mini-batches to train
our network in this study. There are three parts in the input
data corresponding to the initial conditions, the boundary
conditions and the residuals of equations respectively. We
place 100,000 points inside the domain and 25,000 points on
the boundary sampled at each time step, and 150,000 points
at the initial time step to determine the loss function. The
total number of iterations in one training epoch used is 100.
The hyper-parameter values are α = 100, β = 100.

5. Results

The performance comparison of our network with previ-
ous state of the art is shown in Table 1:

The exact and learned dynamics solution for the Burgers
equation using our network is shown in Figure 4:

Figure 4. A solution of the Burger’s equation (left panel) is com-
pared to the corresponding solution of the learned partial differential
equation (right panel).

The exact and learned dynamics solution for the Navier
Stokes equation using our network is shown in Figure 5:

The actual and and the predicted dynamics of the ve-
locity components u and v using our network at different
timeframes is shown in Figure 6:

Figure 5. A solution of the Navier Stokes equation (left panel)
is compared to the corresponding solution of the learned partial
differential equation (right panel).

Figure 6. The first row shows the images of the true dynamics. The
last two rows show the images of the predicted dynamics using our
network.

5.1. Ablation Studies

A study of with and without using channel and spatial
attention module on the performance is shown in Table 2:

6. Conclusions

In this paper, we present a attention based physics in-
formed neural network named AA-PINN to simulate incom-
pressible Navier Stokes and Burgers Equations. We for-
mulate our network using Pressure-Velocity coupling. The
spatial and temporal co-ordinates of the domain are input
while instantaneous pressure and velocity fields are output.
We use the initial and boundary conditions as supervised
data-driven parts, while residual of the Navier-Stokes and
Burgers equations as the unsupervised part in the loss func-
tion while training our network. We propose a more robust
loss function to handle both the boundary conditions as well
as initial conditions. We test the performance our network
using RMSE, divergence and TKE as the evaluation metrics.
We demonstrate our designed network is more robust while
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Table 1. Comparion of SOTA networks using the number of parameters, the best number of input frames, the best number of accumulated
errors for back-propogation and training time for one epoch.

Models TF-net U-net GAN ResNet ConvLSTM SST DHPM Ours

no of param(106) 15.9 25.0 26.1 21.2 11.8 49.9 2.12 0.53
input length 25 25 24 26 27 23 23 20
accumulated errors 4 6 5 5 4 5 5 2
time for one epoch(min) 0.39 0.57 0.73 1.68 45.6 0.95 4.591 0.72

Table 2. Ablation study using variations of spatial and channel attention modules.

Metrics Only SA Only CA Both

number of parameters(106) 1.23 0.71 0.53
accumulated errors 5 3 2
time for one epoch(min) 1.05 1.16 0.72

modelling the complex flow physics. In the future, we would
like to study the effect of attention mechanism for solving
compressible and steady Navier Stokes Equations.
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