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Abstract

Attention mechanism of late has been quite popular in
the computer vision community. A lot of work has been
done to improve the performance of the network, although
almost always it results in increased computational com-
plexity. In this paper, we propose a new attention module
that not only achieves the best performance but also has
lesser parameters compared to most existing models. Our
attention module can easily be integrated with other convo-
lutional neural networks because of its lightweight nature.
The proposed network named Dual Multi Scale Attention
Network (DMSANet) is comprised of two parts: the first part
is used to extract features at various scales and aggregate
them, the second part uses spatial and channel attention
modules in parallel to adaptively integrate local features
with their global dependencies. We benchmark our network
performance for Image Classification on ImageNet dataset,
Object Detection and Instance Segmentation both on MS
COCO dataset.

1. Introduction

The local receptive field of the human eye has led to the
construction of convolutional neural networks which has
powered much of the recent advances in computer vision.
Multi scale architecture used in the famous InceptionNet
(Szegedy et al., 2016) aggregates multi-scale information
from different size convolutional kernels. Attention Net-
works has attracted a lot of attention recently as it allows
the network to focus on only then essential aspects while
ignoring the ones which are not useful (Li et al., 2019), (Cao
etal., 2019) and (Li et al., 2019).

A lot of problems have been successfully tackled using
attention mechanism in computer vision like image clas-
sification, image segmentation, object detection and image
generation. Most of the attention mechanisms can be broadly
classified into two types channel attention and spatial atten-
tion, both of which strengthens the original features by aggre-
gating the same feature from all the positions with different

aggregation strategies, transformations, and strengthening
functions (Zhang et al., 2021).

Some of the work combined both these mechanism to-
gether and achieved better results (Cao et al., 2019) and
(Woo et al., 2018). The computational burden was reduced
by (Wang et al., 2020) using efficient channel attention and
1 x 1 convolution. The most popular attention mechanism
is the Squeeze-and Excitation module (Hu et al., 2018b),
which can significantly improve the performance with a con-
siderably low cost. The “channel shuffle” operator is used
(Zhang and Yang, 2021) to enable information communica-
tion between the two branches. It uses a grouping strategy,
which divides the input feature map into groups along the
channel dimension.

The performance (in terms of accuracy) vs computational
complexity (in terms of number of parameters) of the state
of art attention modules is shown in Figure 1:
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Figure 1. Comparing the accuracy of different attention methods
with ResNet-50 and ResNet-101 as backbone in terms of accu-
racy and network parameters. The circles reflects the network
parameters and FLOPs of different models. Our proposed network
achieves higher accuracy while having less model complexity.



2. Related Work

There are two main problems which hinders the progress
in this field: 1) Both spatial and channel attention as well
as network using combination of two uses only local infor-
mation while ignoring long range channel dependency, 2)
The previous architectures fail to capture spatial information
at different scales to be more robust and handle more com-
plex problems. These two challenges were tackled by (Duta
et al., 2020) and (Li et al., 2019) respectivly. The problem
with these architectures is that the number of parameters
increased considerably.

Pyramid Split Attention (PSA) (Zhang et al., 2021) has
the ability to process the input tensor at multiple scales. A
multi-scale pyramid convolution structure is used to inte-
grate information at different scales on each channel-wise
feature map. The channel-wise attention weight of the multi-
scale feature maps are extracted hence long range channel
dependency is done.

Non-Local block (Wang et al., 2018) is proposed to build
a dense spatial feature map and capture the long-range de-
pendency using non-local operations. (Li et al., 2019) used
a dynamic selection attention mechanism that allows each
neuron to adaptively adjust its receptive field size based on
multiple scales of input feature map. (Fu et al., 2019) pro-
posed a network to integrate local features with their global
dependencies by summing these two attention modules from
different branches.

Multi scale architectures have been used sucessfully for
a lot of vision problems (Sagar, 2020b), (Hu et al., 2018b)
and (Sagar and Soundrapandiyan, 2020). (Fu et al., 2019)
adaptively integrated local features with their global depen-
dencies by summing the two attention modules from differ-
ent branches. (Hu et al., 2018a) used spatial extension using
a depth-wise convolution to aggregate individual features.
Our network borrows ideas from (Gao et al., 2018) which
used a network to capture local cross-channel interactions.

Our main contributions can be summarized as follows:

* A new attention module is proposed which aggregates
feature information at various scales. Our network is scal-
able and can be easily plugged into various computer vision
problems.

* Our network captures more contextual information using
both spatial and channel attention at various scales.

* Our experiments demonstrate that our network outper-
forms previous state of the art with lesser computational
cost.

3. Method
3.1. Feature Grouping

Shuffle Attention module divides the input feature map
into groups and uses Shuffle Unit to integrate the channel
attention and spatial attention into one block for each group.

The sub-features are aggregated and a “channel shuffie” op-
erator is used for communicating the information between
different sub-features.

For a given feature map X € RC*H*W where C, H, W
indicate the channel number, spatial height, and width, re-
spectively, shuffle attention module divides X into G groups
along the channel dimension, i.e., X = [X1, X¢g], X) €
RC/GXHXW - An attention module is used to weight the
importance of each feature. The input of X}, is split into
two networks along the channel dimension Xy, X2 €
RC/2GxHXW The first branch is used to produce a channel
attention map by using the relationship of channels, while
the second branch is used to generate a spatial attention map
by using the spatial relationship of different features.

3.2. Channel Attention Module

The channel attention module is used to selectively weight
the importance of each channel and thus produces best output
features. This helps in reducing the number of parameters
of the network. Let X € RE*H*W denotes the input fea-
ture map, where the quantity H, W, C represent its height,
width and number of input channels respectively. A SE block
consists of two parts: squeeze and excitation, which are re-
spectively designed for encoding the global information and
adaptively recalibrating the channel-wise relationship. The
Global Average Pooling (GAP) operation can be calculated
by the as shown in Equation 1:
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The attention weight of the ¢*" channel in the SE block
can be written as denoted in Equation 2:

we = o (WiReLU (W, (GAP.))) )

where Wy € RC*Cr and W, € RE"*C represent the
fully-connected (FC) layers. The symbol ¢ represents the
excitation function where Sigmoid function is usually used.

We calculate the channel attention map X € R*¢ from
the original features A € RE*H*W_  We reshape A to
RE*N | and then perform a matrix multiplication between
A and the transpose of A. We then apply a softmax layer to
obtain the channel attention map X € R*® as shown in
Equation 3:

exp (Az . A])
c
>i1 exp (4; - Aj)
where z;; measures the i'" channel’s impact on the j!"
channel. We perform a matrix multiplication between the

transpose of X and A and reshape their result to RC*#xW
. We also multiply the result by a scale parameter /3 and
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perform an element-wise sum operation with A to obtain the
final output £ € RE*H*W a5 shown in Equation 4:

c
Eyj=p Z (wj:As) + A 4
i1

3.3. Spatial Attention Module

We use Instance Normalization (IN) over X5 to obtain
spatial-wise statistics. A F'c() operation is used to enhance
the representation of Xy5. The final output of spatial atten-
tion is obtained by where W, and b, are parameters with
shape RC/2G*1x1After that the two branches are concate-
nated to make the number of channels equal to the number
of input.

A local feature denoted by A € RE*H*W js fed into a
convolution layer to generate two new feature maps B and C,
respectively where B, C' € RE*H*W We reshape them to
RE*N where N = H x W is the number of pixels. Next a
matrix multiplication is done between the transpose of C' and
B, and apply a softmax layer to calculate the spatial attention
map S € RV>*N_ This operation is shown in Equation 1:

exp (B; - Cj)
S exp (B; - Cj)

where s;; measures the it" position’s impact on ;' po-
sition. Next we feed feature A into a convolution layer to
generate a new feature map D € RE*H*W and reshape it to
RE*N_ We perform a matrix multiplication between D and
the transpose of S and reshape the result to RE>*7*W  We
multiply it by a scale parameter « and perform a element-
wise sum operation with the feature A to obtain the final
output £ € RE*H*W a5 shown in Equation 2:

®)

Sji =

N
Egj =« Z (SJZDZ) + A]' (6)
i=1

3.4. Aggregation

In the final part of the network, all the sub-features are
aggregated. We use a “channel shuffle” operator to enable
cross-group information flow along the channel dimension.
The final output of our module is the same size as that of
input, making our attention module quite easy to integrate
with other networks.

The whole multi-scale pre-processed feature map can be
obtained by a concatenation way as defined in Equation 7:

F = Concat ([E1;, E2;]) (N

where F' € RE*H>W g the obtained multi-scale feature
map. Our attention module is used across channels to adap-
tively select different spatial scales which is guided by the
feature descriptor. This operation is defined in Equation 8:

exp (Z;)
Zf:_ol exp (Z;)
Finally we multiply the re-calibrated weight of multi-

scale channel attention ay; with the feature map of the cor-
responding scale F; as shown in Equation 9:

att; = Softmax (Z;) = (8)
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3.5. Network Architecture

We compare our network architecture with Resnet (Wang
et al., 2017), SENet (Hu et al., 2018b) and EPSANet (Zhang
et al., 2021) in Figure 3. We use our DMSA module in
between 3 x 3 convolution and 1 X 1 convolution. Our
network is able to extract features at various scales and
aggregate those individual features before passing through
the attention module.

We propose DMSA module with the goal to build more
efficient and scalable architecture. The first part of our net-
work borrows ideas from (Li et al., 2019) and (Zhang and
Yang, 2021). An input feature map X is splitted into N parts
along with the channel dimension. For each splitted parts, it
has Cy=Cs number of common channels, and the 3" feature
map is X; € RCo*HXW The individual features are fused
before being passed to two different branches.

These two branches are comprised of position attention
module and channel attention module as proposed in (Fu
et al., 2019) for semantic segmentation. The second part
of our network does the following 1) Builds a spatial atten-
tion matrix which models the spatial relationship between
any two pixels of the features, 2) A matrix multiplication
between the attention matrix and the original features. 3) An
element-wise sum operation is done on the resulting matrix
and original features.

The operators concat and sum are used to reshape the
features. The features from the two parallel branches are ag-
gregated to produce the final output. The complete network
architecture is shown in Figure 2:

The architectural details our proposed attention network
is shown in Table 1:

3.6. Implementation Details

We use Residual Networks (He et al., 2016) as the back-
bone which is widely used in literature for image classifi-
cation on Imagenet dataset (Deng et al., 2009). Data aug-
mentation is used for increasing the size of the dataset and
the input tensor is cropped to size 224 x 224. Stochastic
Gradient Descent is used as the optimizer with learning rate
of le~*, momentum as 0.9 and mini batch size of 64. The
learning rate is initially set as 0.1 and is decreased by a factor
of 10 after every 20 epochs for 50 epochs in total.

We use Residual Network along with FPN as the back-
bone network (Lin et al., 2017a) for object detection. The
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Figure 2. Illustration and comparison of ResNet, SENet, EPSANet and our proposed DMSANet blocks.
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Figure 3. A detailed Illustration of DMSANet

detectors we benchmark against are Faster RCNN (Ren
et al., 2015), Mask RCNN(He et al., 2017) and RetinaNet
(Lin et al., 2017b) on MS-COCO dataset (Lin et al., 2014).
Stochastic Gradient Descent is used as the optimizer with a
weight decay of le—%, momentum is 0.9, and the batch size
is 16 per GPU for 10 epochs. The learning rate is set as 0.01
and is decreased by the factor of 10 every 10th epoch.

For instance segmentation we use Mask RCNN (He et al.,
2017) with FPN (Lin et al., 2017a) as backbone. Stochastic
Gradient Descent is used as the optimizer with a weight
decay of le—*, momentum is 0.9, and the batch size is 4 per
GPU for 10 epochs. The learning rate is set as 0.01 and is
decreased by the factor of 10 every 10th epoch.

4. Results

4.1. Image Classification on ImageNet

We compare our network with previous state of the art on
ResNet with 50 and 101 layers.

Our network shows the best performance in accuracy,
achieving a considerable improvement compared with all the
previous attention models along with lower computational
cost. The comparision of our network against previous state
of the art with ResNet50 as backbone is shown in Table 2:

The comparision of our network against previous state of
the art with ResNet101 as backbone is shown in Table 3:



Table 1. Network design of the proposed DMSANet.

Output ResNet-50 DMSANet

112x112  7x7, 64 7%, 64

56x56 3x3 max pool 33 max pool
[1x1, 64 [ 1x1, 64

56x56 3x3, 64| x3 DMSA, 64| x3
1x1, 256 1x1, 256
[1x1, 128 1x1, 128

28x28 3x3, 128 x4 DMSA, 128| x4
1x1, 512 1x1, 512
[1x1, 256 1x1, 256

14x 14 3x3, 256 | x6 |DMSA, 256 | x6
1x1, 1024 1x1, 1024
[1x1, 512 1x1, 512

%7 3x3, 512 | x3 |DMSA, 512| x3
1x1, 2048 Ix1, 2048

1x1 7x7 GAP,1000-d fc ~ 7x7 GAP,1000-d fc

Table 2. Comparison of various attention methods on ImageNet
with ResNet50 as backbone in terms of network parameters(in
millions), floating point operations per second (FLOPs), Top-1 and
Top-5 Validation Accuracy(%). The best records are marked in
bold.

Network Params ~ FLOPs  Top-1 Acc (%)  Top-5 Acc(%)
ResNet 25.56 4.12G 75.20 92.52
SENet 28.07 4.13G 76.71 93.38
CBAM 28.07 4.14G 77.34 93.69
ABN 43.59 7.18G 76.90 -
GCNet 28.11 4.13G 77.70 93.66
AANet 25.80 4.15G 77.70 93.80
ECANet 25.56 413G 77.48 93.68
FeaNet 28.07 413G 78.52 94.14
EPSANet(Small)  22.56 3.62G 77.49 93.54
EPSANet(Large) ~ 27.90 472G 78.64 94.18
DMSANet 2625 344G 80.02 94.27

Table 3. Comparison of various attention methods on ImageNet
with ResNet 101 as backbone in terms of network parameters(in
millions), floating point operations per second (FLOPs), Top-1 and
Top-5 Validation Accuracy(%). The best records are marked in
bold.

Network Params FLOPs Top-1 Acc (%) Top-5 Acc(%)
ResNet 44.55 7.85G 76.83 93.48
SENet 49.29 7.86G 77.62 93.93
BAM 4491 7.93G 77.56 93.71
CBAM 49.33 7.88G 78.49 94.31
SRM 44.68 7.95G 78.47 94.20
ECANet 44.55 7.86G 78.65 94.34
AANet 45.40 8.05G 78.70 94.40
EPSANet(Small) 38.90 6.82G 78.43 94.11
EPSANet(Large) 49.59 8.97G 79.38 94.58
DMSANet 4229 7.11G 81.54 9493

4.2. Object Detection on MS COCO

The comparision of our network using Faster RCNN de-
tector against previous state of the art is shown in Table
4:

The comparision of our network using MASK RCNN
detector against previous state of the art is shown in Table 5:

The comparision of our network using RetinaNet detector
against previous state of the art is shown in Table 6:

Table 4. Comparison of object detection results on COCO val2017
using Faster RCNN detector. The best records are marked in bold.

Backbone Params(M) ~ GFLOPs AP APsg  APrpg APg APy APy,
ResNet-50 41.53 207.07 36.4 58.2 39.5 21.8 40.0 46.2
SENet-50 44.02 207.18 37.7 60.1 40.9 229 419 482
ECANet-50 41.53 207.18 38.0 60.6 40.9 234 42.1 48.0
SANet-50 41.53 207.35 38.7 61.2 41.4 223 42.5 49.8
FcaNet-50 44.02 215.63 39.0 61.1 423 23.7 42.8 49.6
EPSANet-50(S) 38.56 197.07 39.2 60.3 423 22.8 424 51.1
EPSANet-50(L) 43.85 219.64 40.9 62.1 44.6 23.6 44.5 54.0
DMSANet 44.17 22231 414 61.9 46.2 258 44.7 553

Table 5. Comparison of object detection results on COCO val2017

using Mask RCNN detector. The best records are marked in bold.

Backbone Params(M) GFLOPs AP APsgq APrs5 APg APps APy,
ResNet-50 44.18 275.58 372 589 40.3 222 40.7 48.0
SENet-50 46.67 275.69 38.7 60.9 42.1 234 427 50.0
Non-local 46.50 288.70 38.0 59.8 41.0 - - -
GCNet-50 46.90 279.60 39.4 61.6 424 - - -
ECANet-50 44.18 275.69 39.0 61.3 42.1 242 42.8 499
SANet-50 44.18 275.86 39.4 61.5 42.6 234 42.8 51.1
FcaNet-50 46.66 261.93 403 62.0 44.1 252 439 52.0
EPSANet-50(S) 41.20 248.53 40.0 60.9 433 223 432 52.8
EPSANet-50(L)) 46.50 271.10 414 62.3 453 23.6 45.1 54.6
DMSANet 47.23 279.26 43.1 61.6 47.5 24.1 46.9 56.5

Table 6. Comparison of object detection results on COCO val2017

using RetinaNet detector. The best records are marked in bold.

Backbone Params(M) GFLOPs AP APs5q APr5 A PS APps A PL
ResNet-50 37.74 239.32 35.6 55.5 382 20.0 39.646.8

SENet-50 40.25 239.43 37.1 572 39.9 212 40.7 493
SANet-50 37.74 239.60 375 58.5 39.7 213 412 459
EPSANet-50(S) 34.78 229.32 382 58.1 40.6 215 41.5 512
EPSANet-50(L)) 40.07 251.89 39.6 59.4 423 21.2 434 529
DMSANet 41.63 270.17 40.2 59.8 44.1 235 44.8 54.8

4.3. Instance Segmentation on MS COCO

We used Mask-RCNN (He et al., 2017) as benchmark
on MS-COCO dataset (Lin et al., 2014). The comparision
results of our network on instance segmentation using MS
COCO dataset against previous state of the art is shown in
Table 7:

Table 7. Instance segmentation results of different attention net-
works by using the Mask R-CNN on COCO. The best records are
marked in bold.

Network AP APgy APy APg APy APp,
ResNet-50 34.1 555 36.2 16.1 36.7 50.0
SENet-50 354 574 37.8 17.1 38.6 51.8
GCNet 35.7 584 376 - - -
ECANet 356 58.1 377 17.6 39.0 51.8
FcaNet 36.2 58.6 38.1 - - -
SANet 36.1 58.7 38.2 19.4 394 49.0
EPSANet-50(Small) 359 57.7 38.1 185 38.8 49.2
EPSANet-50(Large) 37.1 59.0 395 19.6 40.4 50.4
DMSANet 374 61.1 40.7 193 40.9 51.7

.
4.4. Ablation Study

The ablation studies of our architecture is shown in Table
8. The results are best obtained using instance normalization.
Both removing F,() and using 1 x 1 Conv results in reduced
performance as compared to the original network. The ear-
lier is because F() is used to enhance the performance of
individual features while latter is because number of chan-
nels in each sub-feature is too few, so it is not important to
exchange information among different channels.



Table 8. Performance comparisons of our network using ResNet 50
as backbone with four options (i.e., original, using Batch Normal-
ization, using Group Normalization, using shuffle normalization,
eliminating F¢() and using 1 x 1 Conv to replace F.() on ImageNet-
1k in terms of GFLOPs and Top-1/Top-5 accuracy (in %). The best
records are marked in bold.

Methods GFLOPs  Top-1 Acc(%) Top-5 Acc(%)
origin 344 80.02 94.27
W BN 3.82 77.37 93.80
W GN 3.56 77.61 92.89
W SN 3.51 78.16 93.48
W/O F.() 4.07 77.64 93.18
1x1Conv 3.55 78.69 93.71

5. Conclusions

In this paper, we propose a novel Attention module named
Dual Multi Scale Attention Network (DMSANet). Our net-
work is comprised of two parts 1) first for aggregating fea-
ture information at various scales 2) second made up of
position and channel attention modules in parallel for cap-
turing global contextual information. After evaluating our
network both qualitatively and quantitatively, we show that
our network outperforms previous state of the art across
image classification, object detection and instance segmen-
tation problems. The ablation experiments show that our
attention module captures long-range contextual information
effectively at various scales thus making it generalizable to
other tasks. The best part of DMSANet attention module is
that it is very lightweight and hence could be easily plugged
into various custom networks as and when required.
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